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Abstract

When constructing Wald tests, consistency is the key property required for the variance estimator.

This property ensures asymptotic validity of Wald tests and confidence intervals. Classical efficiency

comparisons of hypothesis tests indicate all consistent variance estimators lead to equivalent Wald tests

under local power approximations. This paper develops a simple asymptotic framework under fixed

alternatives, which leads to new conclusions. In particular, we identify that variance estimation will have

a first-order impact on the efficiency of Wald tests when size tends to zero with sample size while effect

sizes are fixed. We apply this framework to several applications, including cluster-robust inference and

quantile regression. In the case of cluster-robust inference, we provide for an asymptotic framework in

which choosing the wrong cluster size can lead to lower power of tests. Simulations demonstrate that the

results are applicable to moderate sample sizes and that the results can provide a useful approximation

for size in standard ranges.

1 Introduction

Much of empirical work in economics follows a three step recipe: estimate the parameter of interest, estimate

the asymptotic variance, then construct a test statistic or confidence interval to answer the research question.

The first step is generally treated differently than the other two; while discussions on parameter estimation

often focus on efficiency, the dialogue around variance estimation and testing typically focuses on robustness

to misspecification. Ignoring any efficiency implications of variance estimation is at odds with the lived

experience of empirical researchers, in that robust variance estimators are often considered “conservative.”

In this paper we provide a first-order asymptotic theory which characterises scenarios in which variance

estimation affects the asymptotic power of tests. The resulting asymptotic theory provides a theoretical

foundation for several common “folk” theorems in applied work.

The choice of variance estimator is an ever present decision in applied work. There is a menu of available

robust, consistent variance estimators in standard statistical packages. Researchers with grouped data must

determine whether to compute cluster-robust standard errors, and what level to cluster at. In the case of

quantile regression, researchers choose a kernel density estimator to use. In likelihood settings under correct

specification, the Fisher information matrix can be estimated using the outer product of the score or the

second derivative of the log-likelihood. Robust variance estimators in time series involve choosing a kernel
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and truncation point. We will not consider all these examples here, however we provide a framework that is

suited to studying the effect of variance estimation in many of these contexts.

This paper makes three key contributions to the econometric literature on hypothesis testing. First,

we provide a general theory of the asymptotic behaviour of Wald test statistics under a fixed alternative.

This theory allows us to answer an important question: how does the choice of variance estimator affect the

behaviour of test statistics under the alternative? We find that under a sequence of tests where size tends

to zero and power converges to a constant, different variance estimators lead to different behaviour. The

limiting power along the sequence of tests depends not only on consistency of the variance estimator, but also

the variance and possible covariance with the estimator of the parameter of interest. Second, this implies a

way of conducting power analysis in a small-size, fixed-alternative regime. Simulations provide supporting

evidence that this approximation is accurate in parts of the parameter space where power is high. Last,

we apply this approach to several applications, including smooth generalized method of moments (GMM)

problems, linear models with possible cluster dependence, and quantile regression.

The theory developed in this paper takes a different approach compared with the traditional local-

asymptotic theory of Engle (1984), Newey and McFadden (1994), and van der Vaart (1998). That work

finds that a broad class of tests statistics have the same limiting distribution under local-alternatives. Our

analysis is non-local, which leads to these equivalencies no longer holding in general. Under fixed alternatives,

we can view a re-scaled version of the tests statistic as an estimator of a non-centrality parameter: the ratio

of the effect size to the variance. With this perspective in mind, the asymptotic behaviour of the test

statistic depends on both the estimation of the numerator (depending on the parameter estimator) and

the denominator (depending on the variance estimator). In the case of Wald tests, local equivalence holds

whenever the same parameter estimator is used in two different tests, even if different consistent variance

estimators are used. This equivalence no longer holds in our asymptotic theory when different estimators of

the asymptotic variance are used. It turns out that variance estimation has an impact on asymptotic power

in testing regimes where size converges to 0 and power converges to some fixed constant. These asymptotics

have a similar flavour to the asymptotic experiment proposed in Bahadur (1967). A benefit of our approach

is that no large-deviation results are necessary. In a similar fashion, our approach is also more broadly

applicable than the measure proposed in Hodges and Lehmann (1956), where size converges to a constant

and power converges to 1, an approach which also requires large-deviation theory.

We are not the first to use asymptotics to assess the behaviour of different variance estimators. Sun,

Phillips, and Jin (2008) compares fixed-bandwidth to small bandwidth asymptotics in constructing standard

errors for time-series regressions. They note that traditional optimal choices of the bandwidth are chosen

based on estimation criteria, rather than testing criteria, and develop a theory where the power and size of

tests depend explicitly on bandwidth choice in a variety of asymptotic frameworks. Iacone, Leybourne, and

Taylor (2013) uses fixed-b asymptotics to choose between tuning parameters for variance estimators and test

statistics when testing for breaks in a linear trend. This paper links the estimation of the variance to the

power of tests along a different sequence of tests where size tends to zero. In Kato (2012), the asymptotic

distribution is derived for the kernel density estimator for the asymptotic variance in the quantile regression

setting of Koenker and Bassett (1978), for the particular choice of a uniform kernel. We extend the results

in Kato (2012), and link the form of the asymptotic bias and variance to power calculations.

There has also been other work in econometrics on ways of characterising the behaviour of tests under the

alternative that also differ from the local asymptotic normality approach of Le Cam (2012). Kim and Perron

(2009) propose using an approximate version of the Bahadur (1967) asymptotic relative efficiency measure
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when comparing tests for structural breaks in time series. Canay and Otsu (2012) used Hodges-Lehmann

asymptotic relative efficiency to assess the efficiency of GMM and generalized empirical likelihood tests of

moments conditions. A benefit of our approach is broad applicability to testing problems most frequently

encountered in empirical work, while maintaining an exact asymptotic comparison.

We demonstrate the broad applicability of our approach by considering several important applications of

the theory. We derive an asymptotic approximation of Wald test statistics for general use in GMM problems.

The main result is quite general, allowing for cluster-dependence and non-smooth moment conditions. The

first specific application we provide is to cluster-robust inference in the linear model. The general framework

for cluster-robust inference we adopt is that in Hansen and Lee (2019). An alternative approach, the design-

based approach, is discussed in Abadie, Athey, Imbens, and Wooldridge (2020). Popularized in Bertrand,

Duflo, and Mullainathan (2004), some recent work in econometrics has focused on the choice of cluster level.

In Cameron and Miller (2015) it is argued that the coarsest cluster level should always be used. Abadie,

Athey, Imbens, and Wooldridge (2023) presents a design-based approach to choosing the appropriate cluster

level, along with some finite-sample results. MacKinnon, Nielsen, and Webb (2023) provide a sequential

testing procedure to detect the correct clustering level, within the model-based framework we adopt. We

show that there is an unambiguous loss of efficiency when independent observations are included in the same

cluster. Our results imply a method for researchers to conduct power analysis to see if the efficiency loss in

their case is severe, or if there is little to be lost from the added robustness.

Our second specific application is to quantile regression. We focus on the linear conditional quantile

regression model of Koenker and Bassett (1978). In this case, classic approaches to variance estimation

involve estimators of the conditional density of the error term. We focus on the kernel density estimator of

Powell (1991). The default choices in the quantreg package in R and the qreg function in Stata are the

Gaussian and Epanechnikov kernel, respectively. We show that the choice of kernel and bandwidth do have

an impact on the first-order behaviour of the test statistics in our setting.

Our distributional theory extends results in Bentkus, Jing, Shao, and Zhou (2007), Omey and van

Gulck (2009), and Shao and Zhang (2009), where one-sample t-statistics and similar types of statistics are

considered. We extend the basic theory to GMM problems under sampling with cluster-dependence, including

non-smooth problems such as quantile regression. In Bentkus et al. (2007) these asymptotic distributions are

used to motivate asymptotic power functions. We use this type of calculation to motivate our own relative

efficiency comparison.

The rest of the paper proceeds as follows: we start by introducing the principles of our analysis in

Section 2, in the context of a simple testing problem: hypothesis testing for means. In Section 3, we provide

a treatment of the distribution of Wald statistics in GMM settings, under fixed alternatives. A strategy for

conduction power analysis and some simulations are provided in Section 4 to show the efficacy of the methods

here in making finite-sample predictions. A summary of our results is discussed in Section 5. Throughout, Φ

is used to denote the standard normal cumulative distribution function and ⇒ is used to denote convergence

in distribution.

2 An Illustrative Example: the Sample Mean

We begin by considering a simple testing problem: a two sided hypothesis test for the sample mean. To

illustrate the basic approach, we compare the classic Wald test statistic with a cluster-robust version. Under

sequences of local-alternatives, these test statistics have the same asymptotic properties, and therefore the
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same asymptotic power function. Hence, it is not possible to use asymptotic methods to compare such tests.

To overcome this, we compare the asymptotic distributions under fixed alternatives. In this asymptotic

setting we find that the asymptotic distributions differ for the two test statistics. This leads to a natural

relative efficiency comparison, in which we find that when the observations are independent (i.e. both test

statistics have correct asymptotic size) there is an asymptotic power loss associated with using the cluster-

robust test statistic.

2.1 Cluster-robust inference

Consider a sample {Xgi}, where i denotes observation i in group g. There are G equal-sized groups, each

containing ng observations, for a total of Gng = n observations.1 A concerned researcher suggests that

we should use cluster-robust methods since the data were grouped when collected, however we know that

the observations are independent and identically distributed. For all g, i, we have that EXgi = µ and

Var(Xgi) = σ2. Let γ and κ denote the skewness and kurtosis respectively. We would like to test H0 : µ = µ0

against H1 : µ ∕= µ0. We construct Wald tests based on the sample mean:

X̄n :=
1

n

G󰁛

g=1

ng󰁛

i=1

Xgi

We compare the test statistic we prefer, the classic Wald test-statistic, to a cluster robust version suggested

by another researcher.2 The classic Wald test statistic, assuming homskedasticity, is given by:

Wh =
n(X̄n − µ0)

2

σ̂2
h

, σ̂2
h =

1

n

G󰁛

g=1

ng󰁛

i=1

(Xgi − X̄n)
2. (1)

The cluster-robust Wald statistic is:

Wc =
n(X̄n − µ0)

2

σ̂2
c

, σ̂2
c =

1

n

G󰁛

g=1

󰀣
ng󰁛

i=1

(Xgi − X̄n)

󰀤2

. (2)

Traditional analysis proceeds as follows. Under the null hypothesis, and without any cluster dependence, we

have that

Wh ⇒ χ2
1

Wc ⇒ χ2
1

by a basic application of Slutsky’s theorem: the numerator of each test statistic, divided by σ2, is asymptoti-

cally χ2
1, and each denominator converges to σ2 in probability. Implicitly, this effectively treats each variance

estimator as equal to its probability limit. The same logic holds in the case of a sequence of local alterna-

tives, where we consider µn = µ0 + δ/
√
n. In this case, Slutsky’s theorem applies again: the only change is

that the numerator of the test statistic is no longer correctly centered, therefore the limiting distribution is

χ2
1(δ

2/σ2).

1We can also accommodate unbalanced designs with growing cluster sizes; this type of result is also covered in Section 3.
2For simplicity, we do not include any degrees-of-freedom correction, whether for the variance estimator or number of clusters.

Since we use the large-G asymptotics of Hansen and Lee (2019), these degrees of freedom corrections disappear in the limit.
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Now consider the fixed alternative µ = ∆+ µ0 and define the non-centrality parameter:

ξ :=
∆

σ

For a ∈ {h, c}, expansions of the test statistics under a fixed alternative are:

1

n
Wa =

(X̄n − µ)2

σ̂2
a

+
2∆(X̄n − µ)

σ̂2
a

+
∆2

σ̂2
a

(3)

The first two terms converge in probability to 0, and the last term converges to ξ2 in each case. Thus,

one way of viewing the test statistic under a fixed alternative is as a scaled estimator of the non-centrality

parameter ξ2. In (3), the first term on the righthand side is asymptotically negligible relative to the other

two terms. Under the assumption of finite kurtosis, we can obtain a normal asymptotic distribution:

√
n

󰀕
1

n
Wa − ξ2

󰀖
⇒ N (0, Σa) (4)

where

Σh = ξ2
󰀃
(κ− 1)ξ2 − 4γξ + 4

󰀄
(5)

Σc = ξ2
󰀃
Σh + 2(ng − 1)ξ2

󰀄
. (6)

Even though our observations are i.i.d., the variance estimator in (2) involves the sum over G i.i.d. cluster-

sums, whereas in the variance estimator in (1) we sum over all n observations. There are two effects here.

One is that the proper normalization for (2) is
√
G, rather than

√
n, since we are summing over G squared

cluster-sums. This is because for the purposes of variance estimation, we are only using G data points. We

are effectively using a fixed-fraction of our data: G/n = 1/ng. The other effect is that if we expand the

variance estimators in (2) and (1), the cluster-robust variance estimator will have all the same terms as the

homoskedastic variance estimator, plus some additional terms. When considering the probability limit, these

extra terms have mean zero and disappear. They show up in the asymptotic variance, inflating the tails of

the test statistic.

We now connect the asymptotic distribution of the test statistics to power. Let Cα be the upper α

quantile of a χ2
1 random variable. Local alternatives give a (local) asymptotic approximation to power:

P (nWa > Cα) → 1− Fχ2
1(δ

2/σ2)(Cα), a ∈ {h, c}, δ =
√
n(µn − µ0) (7)

where δ is the local parameter previously defined. This non-central chi-square distribution is the same

regardless of which variance estimator we use. Thus, the asymptotic power comparisons under local alter-

natives do not distinguish between Wald tests where different consistent variance estimators are used; the

first order asymptotics are the same for both test statistics.

One implication of (4), (5), and (6) is that under fixed alternatives the test statistics have different

asymptotic distributions. It is now feasible that we can compare the test statistics with respect to their

asymptotic power properties. Note that Σh < Σc as long as ng > 1 and ξ ∕= 0. We consider the power of the
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test, rearranging and normalising the test statistic based on the asymptotic distribution in (4):

P (nWa > Ca
n) = P

󰀕
Wa − ξ2 >

Ca
n

n
− ξ2

󰀖

= P

󰀳

󰁃Σ−1/2
a

√
n
󰀃
Wa − ξ2

󰀄
>

Ca
n√

nΣa

−

󰁶
nξ2

Σa

󰀴

󰁄 (8)

Part of the appeal of local power analysis is that asymptotically power is in (0, 1). For this to hold true in

this case, we must choose Ca
n appropriately. Under fixed alternatives, we construct a sequence of critical

values Ca
n such that P (nWa > Ca

n) → 1 − β ∈ (0, 1). In this way, the sequence of critical values tells us

about the speed at which the power converges to 1. We choose a sequence Ca
n which is local to the (scaled)

non-centrality parameter nξ2, and approaches this limit from below. Notice that if we set

Ca
n = n

󰀣
ξ2 − t

󰁵
Σa

n

󰀤
(9)

then P (nWa > Ca
n) → Φ(t), where Φ denotes the standard normal cumulative distribution function.

0 ← Cα

n
Ca

n → ξ2

Figure 1: The distribution of 1
nWa will concentrate around the non-centrality parameter ξ2, while the critical

value for the test Cα/n converges to 0. The chosen sequence Ca
n will converge to the non-centrality parameter

at the correct rate so that the power of this sequence of tests is non-degenerate asymptotically.

In Figure 1, we lay out the relationship between the non-centrality parameter, Ca
n, and Cα/n. We want

to gain insight into asymptotic behavior of the exact power in (8), and therefore choose Ca
n converging to ξ2

from below for our relative efficiency comparison. Note that any sequence local to ξ2 in this way will lead

to non-degenerate asymptotic power, and we chose this particular sequence for convenience.

A similar asymptotic power approximation was proposed in Bentkus et al. (2007) in the case of the 1-

sample t-test. In that paper they were primarily concerned with variations in behaviour of the t-test under a

fixed alternative when the observations had possibly fewer than 4 finite moments. For our two test statistics,

Wh and Wc, which one requires a larger sequence of critical values to prevent power from converging to 1?

Let us consider what happens when we use the sequence corresponding to Wh as critical values for tests
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using Wc. The asymptotic power of the tests becomes:

P (nWc > Ch
n) = P

󰀓
Σ

−1/2
h

√
n
󰀃
Wc − ξ2

󰀄
> −t

󰀔
→ Φ

󰀣
t

󰀕
Σh

Σc

󰀖1/2
󰀤

(10)

The last term in (10) is smaller than Φ(t) for all t > 0, since Σh < Σc. Thus, for the same sequence of

critical values, the test using Wh has different power properties than Wc.

It is instructive to compare this procedure with the local asymptotic power comparison we conducted

previously. When comparing local asymptotic power, the effective non-centrality parameter nξ2 is localized

around 0. This implies that asymptotically, the test statistic is on the same scale as conventional critical

values. In our comparison, the critical values are localized to the effective non-centrality parameter, and

analysis is conducted local to that sequence. Our approach can also be compared to the measure developed

in Bahadur (1967). In that paper, a sequence of critical values is derived from the behavior of p-values under

a fixed alternative. The rate at which that sequence disappears is then compared across test statistics in

terms of how quickly the type-I error rate disappears. In this paper we specify the sequence of critical values

and then compare the asymptotic power of tests under the same sequence of critical values. Both procedures

can be interpreted as situations where the type-I error converges to 0 and the power is asymptotically non-

degenerate. A benefit of our analysis is that we only require a central limit theorem, and do not require

large deviation theorems. We will revisit this point in our applications, where often we cannot compute

large-deviation type probabilities.

3 Fixed-Alternative Asymptotics

The previous section motivates the following derivation of the asymptotic distribution of Wald test statistics

under fixed alternatives. In this section we introduce the general setup for deriving the asymptotic distri-

bution of Wald test statistics under fixed alternatives for asymptotically linear estimators. We first give

sufficient conditions for when the test statistics are asymptotically normal under a fixed alternative, and

then use this first-order approximation to motivate an alternative approach to power calculations.

3.1 Test Statistics under Fixed-Alternatives

We focus our attention on parameters which are just-identified by estimating equations:

Eψ(Xi,β) = 0 (1)

where Xi ∈ X , β ∈ B ⊂ Rp, and ψ : X × B → Rp. Our focus will be on tests of a linear hypothesis. Define

the parameter θ := L′β for a fixed matrix L of rank k. Tests of H0 : θ = θ0 against H1 : θ ∕= θ0 are often

performed using the Wald statistic:

Wn := n(L′β̂ − θ0)
′(L′V̂nL)

−1(L′β̂ − θ0) (2)

where V̂n is a suitable variance estimator of a constant matrix Vn such that V
−1/2
n

√
n(β̂ − β) ⇒ N (0, Ip).

Under standard regularity conditions, Wn is asymptotically χ2
k.

When θ ∕= θ0, Wn will diverge off to ∞, in the sense that for all C > 0, P (Wn < C) → 0. This is clearly

not useful for characterising the behaviour of Wn in large samples, and therefore we will consider suitable
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centring and (re)scaling. Our first observation towards this goal is that under the same conditions providing

for Wn to be asymptotically χ2
k, for ∆ = θ − θ0, we have that:

(L′β̂ − θ0)
′(L′V̂nL)

−1(L′β̂ − θ0)−∆′(L′VnL)
−1∆

P→ 0 (3)

Thus, under a fixed alternative, 1
nWn is a consistent estimator of the noncentrality parameter ξ2n :=

∆′(L′VnL)
−1∆. In this light, 1

nWn is a quadratic function of β̂ and a nonlinear function of V̂n. Vn is

further decomposed into two parts, Qn and Ωn, so that Vn = (Q′
nΩ

−1Qn)
−1, where we will assume we

have consistent estimators Q̂n and Ω̂n of Qn and Ωn respectively. We will assume V̂n is constructed as

(Q̂′
nΩ̂

−1
n Q̂n)

−1, and we consider the stochastic expansion of the difference in (3): for some non-random

sequences of vectors an and matrices A1n and A2n, we have that

1

n
Wn − ξ2n = a′n(β̂ − β) + tr(A1n(Q̂n −Qn)) + tr(A2n(Ω̂n − Ωn)) +Rn. (4)

Just as we did in Section 2.1, we write the test statistic as a term which depends on the estimator, a′n(β̂−β),

and terms that depend on the components of the variance estimator, tr(A1n(Q̂n−Qn)) and tr(A2n(Ω̂n−Ωn)).

Under suitable conditions, the remainder Rn is over lower order than the other terms and we will be able

to specify a convergence rate and limiting distribution for 1
nWn under the fixed alternative θ = θ0 +∆. In

particular, we will provide conditions such that there exist sequences Ξn and Bn such that

Ξ−1/2
n

󰀕
1

n
Wn − ξ2n −Bn

󰀖
⇒ N (0, 1) (5)

We now more formally lay out the environment we are interested in, along with the assumptions we

will make that assure existence of such sequences. We will point out the content and applicability of the

assumptions in a few examples motivated by particular econometric applications.

Assumption 1. (Cluster dependence) We will allow for cluster dependence, and in particular we will denote

the observations Xig for observation i in cluster g. Observations are independent across clusters, and we

allow for arbitrary cluster dependence within cluster g, where there are G clusters. If cluster g has ng

observations, the overall sample size is n =
󰁓G

g=1 ng. We require G → ∞ as n → ∞, as for some r ∈ [2,∞)

and C < ∞, we have that 󰀓󰁓G
g=1 n

2r
g

󰀔2/r

n
≤ C, lim

n→∞
max

g

n4
g

n
= 0. (6)

This assumption is identified in Hansen and Lee (2019) as ensuring that clusters cannot be too hetero-

geneous or grow too quickly with n. Notice that we use the version in Assumption 3 from that paper, as we

will be characterising the asymptotic behaviour of estimators of second moments. In this case, the estimator

of the variance cannot be written as a sum over i, but is rather written as a sum over the clusters g, which

requires the second part of (6) to have n4
g instead of n2

g. The constant r will be connected to the number

of finite moments required by the influence functions below: higher cluster-size heterogeneity will require

more bounded moments. This all provides for application of a Lindeberg-Lévy CLT to functions of the

observations at the cluster-level, and serve as sufficient conditions for the influence of any individual cluster

to be uniformly asymptotically negligible. It trivially applies for large enough samples where the cluster size

ng is constant, including ng = 1, but also applies when the clusters are growing, e.g. ng = nα for some

α < (r−2)/2(r−1), or a mix of the two, where only some clusters are growing. For more discussion of these
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examples and other considerations, see Hansen and Lee (2019).

The next assumption confirms the definition of β, β̂, and provides for Wn leading to valid inference

when β = β0. Before doing this, it is helpful to define Qn and Ωn. Let ψ̇ig(β) = ∂
∂β Eψ(Xig,β) and

ψ̃g(Xg,β) :=
󰁓ng

i=1 ψig(Xig,β). Then, we define

Qn :=
1

n

G󰁛

g=1

ng󰁛

i=1

ψ̇ig(β) (7)

Ωn :=
1

n

G󰁛

g=1

E ψ̃g(Xg,β)ψ̃g(Xg,β)
′ (8)

Assumption 2. We assume that there exists a unique β ∈ B such that Eψ(Xig,β) = 0. We further assume

that Eψ(Xig, b) is continuously differentiable in b with continuous and invertible derivative matrix ψ̇ig(b),

for all b in an open neighbourhood Nβ which contains β, and supi,g E 󰀂ψ(Xig,β)󰀂2 < ∞. The estimator β̂

satisfies

1

n

G󰁛

g=1

ng󰁛

i=1

ψ(Xig, β̂) = oP (󰀂Ωn󰀂1/2) (9)

and we assume that Ωn and Qn are full-rank, with the minimum eigenvalue λmin(Ωn) greater than or equal

to c > 0 for all n. Lastly, we assume

(Q′
nΩ

−1
n Qn)

1/2
√
n(β̂ − β) = (Q′

nΩ
−1
n Qn)

1/2 1√
n

G󰁛

g=1

ng󰁛

i=1

(Q′
n)

−1ψ(Xig,β) + oP (1) ⇒ N (0, Iq) (10)

These assumptions are commonly satisfied in applications of interest in economics. The assumptions as stated

serve the purpose of clarifying the environment: inference settings where asymptotically normal inference is

correct in large samples.

Example 1 (Efficient Smooth-GMM ). If ψ(Xi,β) is twice-continuously differentiable in β, E ∂
∂βψ(Xi,β)

has full-rank, E 󰀂ψ(Xi,β)󰀂2 < ∞, and the data are i.i.d., the efficient-GMM estimator β̂ will generally satisfy

(10) with

Qn = E
∂

∂β
ψ(Xi,β) = ψ̇(β) (11)

Ωn = Eψ(Xi,β)ψ(Xi,β)
′ = Ψ(β) (12)

See Newey and McFadden (1994), Theorem 3.2 for a complete list of the technical conditions.

Example 2 (Cluster-Robust Inference). Consider the standard linear regression model:

yig = x′
igβ + εig (13)

where now observation i is in cluster g. Here, ψ(Xig,β) = xig(yig − x′
igβ) = xigεig. Suppose that scores are

uncorrelated across clusters, in that Exigx
′
jhεigεjh = 0 for g ∕= h, but possibly within cluster Exigx

′
jgεigεjg ∕=
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0. For the r in (6), we assume that there exists s > r, such that supi,g E 󰀂xig󰀂2s, supi,g E y2sig < ∞. In this

case, we have

Qn =
1

n

n󰁛

i=1

Exigx
′
ig (14)

Ωn =
1

n

G󰁛

g=1

E

󰀥󰀣
ng󰁛

i=1

xigεig

󰀤󰀣
ng󰁛

i=1

xigεig

󰀤′󰀦
. (15)

Then, if β̂ is the OLS estimator of β and Qn and Ωn are full rank, then (10) is satisfied.

Example 3 (Quantile Regression). Consider the quantile regression model:

yi = x′
iβ(τ) + εi(τ). (16)

In this setting, ψ(Xi,β(τ)) = xi

󰀃
1[yi−x′

iβ(τ)<0] − τ
󰀄
, and

ψ̇i(β(τ)) = Exix
′
ifτ (εi(τ)|xi) (17)

where fτ (·|xi) is the conditional density of εi(τ) given xi. Under i.i.d. sampling, we have that when

supi supu fτ (u|xi) ≤ C < ∞, E 󰀂xi󰀂2 < ∞, and for

Qn = ψ̇i(β(τ)) (18)

= Exix
′
ifτ (0|xi) (19)

Ωn = Exix
′
i

󰀃
1[yi−x′

iβ(τ)<0] − τ
󰀄2

, (20)

then (10) is satisfied.

We will consider Wald statistics formed using plug-in estimators of Qn and Ωn:

Q̂n =
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β̂) (21)

Ω̂n =
1

n

G󰁛

g=1

Ψ̂g(β̂) (22)

Note that in some cases the functions ψ̇ig will have to be estimated as well, as is the case in our quantile

regression example. We also allow for a different choice other than ψ̃g in estimating Ωn, which allows for

applications where variants on the plug-in variance estimator are used. Our main requirement in both cases

10



is that:

1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β)−Qn = oP (1) (23)

1

n

G󰁛

g=1

Ψ̂g(β)− Ωn = oP (1) (24)

and thus we will be in a setting where Wn will lead to asymptotically valid inference. We will require a

stronger assumption here, which implies smoothness on the estimation of Qn and Ωn in β. In a slight abuse of

notation, in the following assumption we write E
ˆ̇
ψig(β̂) in place of E

ˆ̇
ψig(b) |b=β̂ , and similarly for E Ψ̂g(β̂).

Assumption 3. We assume that for any r1n and r2n such that

r1n

󰀣
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β)− E ˆ̇

ψig(β)

󰀤
= OP (1), r1n(β̂ − β) = OP (1) (25)

r2n

󰀣
1

n

G󰁛

g=1

Ψ̂g(β)− E Ψ̂g(β)

󰀤
= OP (1), r2n(β̂ − β) = OP (1) (26)

we have that

r1n

󰀣
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β̂)− E ˆ̇

ψig(β̂)−
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β)− E ˆ̇

ψig(β)

󰀤
= oP (1) (27)

r2n

󰀣
1

n

G󰁛

g=1

Ψ̂g(β̂)− E Ψ̂g(β̂)−
1

n

G󰁛

g=1

Ψ̂g(β)− E Ψ̂g(β)

󰀤
= oP (1). (28)

In characterising the asymptotic distributions of Q̂n and Ω̂n, we cannot rule out that the estimation of

β does not impact the asymptotic behaviour of these matrices, which take β̂ as an input. This assumption

will imply that the estimation of β only enters in the first-order asymptotic behaviour of Q̂n and Ω̂n through

E
ˆ̇
ψig(β̂) and E Ψ̂g(β̂), which can effectively be handled using the delta-method. Furthermore, the additional

noise due to estimating must go to zero at a faster rate than the estimation error in estimating Qn or Ωn

if β was known. This condition is typically satisfied when the
ˆ̇
ψ and Ψ̂ functions are sufficiently smooth

to satisfy a stochastic-equicontinuity condition. Differentiable functions, members of Donsker classes, and

Lipschitz functions will generally satisfy these conditions. In the case of the linear models (Example 2),

these requirements are almost trivially satisfied. The cases of GMM and quantile regression deserves a bit

more attention.

Example 1, continued (Efficient Smooth-GMM ). In the case of smooth GMM settings when ψ(Xi,β)

is sufficiently smooth, both E ∂
∂βψ(Xi,β) = ψ̇(β) and Eψ(Xi,β)ψ(Xi,β)

′ = Ψ(β) are differentiable, and

Assumption 3 will be satisfied.

Assumption 3gmm (Smoothness assumption for GMM ). Let there exist a neighbourhood Nβ of β such that

11



ψ(Xi,β) is twice-continuously differentiable with bounded derivatives in expectation

E

󰀐󰀐󰀐󰀐
∂

∂b
ψ(Xi, b)

󰀐󰀐󰀐󰀐
2

,

p󰁛

k=1

E

󰀐󰀐󰀐󰀐
∂2

∂b∂b′
ψk(Xi, b)

󰀐󰀐󰀐󰀐
2

< ∞ (29)

for all b ∈ Nβ, where Nβ ⊂ Kβ, Kβ-compact.

Under this condition, Assumption 3 will be satisfied.

Lemma 1. Under Assumption 3gmm, we have that

1

n

n󰁛

i=1

∂

∂β
ψ(Xi, β̂)− ψ̇(β̂)− 1

n

n󰁛

i=1

∂

∂β
ψ(Xi,β)− ψ̇(β) = oP (1/

√
n) (30)

1

n

n󰁛

i=1

ψ(Xi, β̂)ψ(Xi, β̂)
′ −Ψ(β̂)− 1

n

n󰁛

i=1

ψ(Xi,β)ψ(Xi,β)
′ −Ψ(β) = oP (1/

√
n) (31)

Example 3, continued (Quantile Regression). In the case of quantile regression, we have to estimate:

Qn = Exix
′
if(0|xi) (32)

A standard estimator is a kernel estimator. Let K(u) be a symmetric function of bounded variation such

that
󰁕
R
uK(u)du = 0 and

󰁕
R
u2K(u)du = 1. A kernel estimator of Qn is given by

Q̂n :=
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀣
yi − x′

iβ̂τ

hn

󰀤
(33)

where hn is a bandwidth. Thus, we have that, in the notation we have used thus far, Ψ̂i(β̂τ ) = xix
′
ih

−1
n K((y−

x′
iβ̂τ )/hn). Assumption 3 is then satisfied with the following assumptions on K and the density of the error

εi(τ):

Assumption 3qreg (Conditional density estimation for quantile regression).

• The kernel function K is symmetric, of bounded variation, and normalized such that:

󰁝

R

uK(u)du = 0,

󰁝

R

u2K(u)du = 1 (34)

• There exist functions Gj(xi) such that for all xi, Gj(xi) ≥ |f (j)(u|xi)|, uniformly in u, j ∈ {0, 1, 2}.
Furthermore, Gj also satisfy, for some δj > 0, E(G0(xi)󰀂xi󰀂4+δ0) < ∞, E(G1(xi)󰀂xi󰀂2+δ1 , and

E(G2(xi)󰀂xi󰀂2) < ∞.

• hn = o(log n/
√
n).

The first assumption is satisfied by all kernel functions used in practice, such as the Gaussian, Epanech-

nikov, Uniform, Biweight, and Triweight kernels. The assumption on bounded varaition implies that the

function can only rise and fall finitely many times.

The assumption on the integrability of envelope functions Gj for the density and its derivatives is quite

similar to assumptions used in Kato (2012) in proving asymptotic normality of the variance estimator when

12



using the uniform kernel. Bounding the density and the first two derivatives is standard in the literature on

kernel density estimation, and in the regression context due to the conditional nature of the density we must

impose additional restrictions on the regressors to ensure integrability of the effective envelope functions that

are used in the bounds.

This bandwidth condition will allow the rate-optimal bandwidth, hn ∝ n−1/5. It is slightly stronger than

the bandwidth condition in Powell (1991), n2hn → ∞. In the estimation of Exix
′
if(0|xi), we can decompose

our kernel estimator into three components:

Q̂n =
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
(35)

=
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
(36)

+
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
(37)

−
󰀣
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖󰀤
(38)

+ Exix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
. (39)

Standard results on asymptotic normality of kernel density estimators give that, for any constant matrix A,

󰁳
nhn

󰀣
1

n

n󰁛

i=1

tr

󰀕
A

󰀕
xix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖󰀖󰀖󰀤
⇒ N (0, V (A)) (40)

for V (A) = E[(x′
iAxi)

2f(0|xi)RK ] and RK =
󰁕
K(u)2du is the roughness of the kernel K(·). Assumption

3qreg implies that this is the only component of the asymptotic distribution of Q̂n which is relevant for the

first-order theory:
Lemma 2. Under Assumption 3qreg, we have that

1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
(41)

−
󰀣
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖󰀤
= oP (1/

󰁳
nhn) (42)

Exix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
= oP (1/

󰁳
nhn) (43)

Thus, the quantile regression model satisfies Assumption 3, where we can observe that the important

rates to consider are r1n = O(
√
nhn) and r2n = O(

√
n).

We are now ready to state our general result on the first-order asymptotics of Wn under fixed alternatives.

First, so that the statement of theorem is focused on the key aspects, we define a sequence of constants Bn

13



and Ξn. Define:

P̃n := (L′VnL)
−1∆∆′(L′VnL)

−1 (44)

P1n := −L(2P̃n − diag(P̃n))L
′ (45)

P2n := (Q′
n)

−1P1nQ
−1
n (46)

P3n := −2VnP1nQ
−1
n (47)

p̃1n := −2∆′(L′VnL)
−1L′ (48)

p̃2n :=
1

n

G󰁛

g=1

p󰁛

k=1

∂

∂β
E Ψ̂gk(β)

′[P2n]k (49)

p̃3n :=
1

n

G󰁛

g=1

ng󰁛

i=1

p󰁛

k=1

∂

∂β
E

ˆ̇
ψigk(β)

′[P3n]k (50)

pn := Q−1
n (p̃1n + p̃2n + p̃3n) (51)

where Ψ̂gk denotes the kth row of Ψ̂g,
ˆ̇
ψigk is the kth row of

ˆ̇
ψig, and [Pln]k is the kth column of Pln. Then,

we can define:

Bn :=
1

n

G󰁛

g=1

tr(P2n(Ψg(β)− E Ψ̂g(β))) +
1

n

G󰁛

g=1

ng󰁛

i=1

tr(P3n(ψ̇ig(β)− E ˆ̇
ψig(β))) (52)

Ygn :=

󰀳

󰁅󰁃

󰁓ng

i=1 p
′
nψ(Xig,β)

tr(P2n(Ψ̂g(β)− E Ψ̂g(β)))
󰁓ng

i=1 tr(P3n(
ˆ̇
ψig(β)− E ˆ̇

ψig(β)))

󰀴

󰁆󰁄 (53)

Ξn :=
1

n2

G󰁛

g=1

E(1′Ygn)
2 (54)

Notice that n
√
Ξn → ∞, as we require the number of clusters G to be increasing, and Ξn = 0 whenever

∆ = 0.

Theorem 1. Assume that Assumptions 1-3 are satisfied. Suppose that for the r ≥ 2 in Assumption 1 that

there exists an 󰂃 > 0 such that:

sup
i,g
E 󰀂ψ(Xig,β)󰀂r+󰂃, sup

i,g
E

󰀐󰀐󰀐 ˆ̇
ψig(β)

󰀐󰀐󰀐
r+󰂃

, sup
g
E

󰀐󰀐󰀐Ψ̂g(β)
󰀐󰀐󰀐
r+󰂃

< ∞ (55)

Then, for the previously defined sequences Ξn, Bn, where Ξn > 0, we have that

1
nWn − ξ2n −Bn√

Ξn

⇒ N (0, 1) (56)

The additional moment conditions assumed here imply the uniform integrability conditions necessary for

a central limit theorem to hold for the appropriate averages of ψ(Xig,β),
ˆ̇
ψig(β), and Ψ̂g(β). These conditions

will typically be strictly stronger than those required for asymptotic normality of β̂. When standard plug-

in estimators for Qn and Ωn are used, then there will be no bias term Bn, however different choices of

estimators of Qn and Ωn will lead to different centering sequences Bn, as well as different normalizations Ξn.

This highlights an important feature of these asymptotics: under fixed alternatives, the choice of variance
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estimator impacts the limit distribution of the test statistic.

We now discuss, and derive expressions for, Bn and Ξn in the particular cases of cluster robust inference,

quantile regression, and IV.

Example 2, continued (Cluster-Robust Inference). In this case we specialise to the case when L = ℓ ∈ Rp.

The linear setting, with plug-in estimators, implies Bn = 0. We also can simplify many of the expressions

making up the components of Ξn. Note that in this case:

P̃n = (L′VnL)
−1∆∆′(L′VnL)

−1 (57)

=
(ℓ′(β − β0))

2

(ℓVnℓ)2
(58)

=
ξ2n

ℓ′Vnℓ
(59)

P1n = −ℓℓ′
ξ2n

ℓ′Vnℓ
(60)

This simplification implies that for:

bn =
∆(Q′

n)
−1ℓ

ℓ′Vnℓ
(61)

cn =
2∆Vnℓ

ℓ′Vnℓ
(62)

an = − 2∆

ℓ′Vnℓ
Q−1

n ℓ− 2

n
Q−1

n

G󰁛

g=1

E

󰀥󰀣
ng󰁛

i=1

xigx
′
ig

󰀤
bnb

′
n

󰀣
ng󰁛

i=1

xigεig

󰀤󰀦
(63)

In this case, Ygn contains a term that is linear in the ψig(Xig,β), a quadratic form in the Ψg(β) =

E(
󰁓ng

i=1 xigεig)(
󰁓ng

i=1 xigεig)
′, and a bilinear form in the

ˆ̇
ψig(β) = Exigx

′
ig:

Ygn =

󰀳

󰁅󰁃

󰁓ng

i=1 a
′
nxigεig󰀃󰁓ng

i=1 b
′
nxigεig

󰀄2 − E
󰀃󰁓ng

i=1 b
′
nxigεig

󰀄2
󰁓ng

i=1 b
′
nxigx

′
igcn −

󰁓ng

i=1E(bnxigx
′
igcn)

󰀴

󰁆󰁄 (64)

The result in Theorem 1 then specialises to:

(ℓ′β̂−θ0)
2

ℓ′V̂nℓ
− ξ2n√

Ξn

⇒ N (0, 1) (65)

Now suppose that there is no cluster dependence, i.e. Ωn = Exigx
′
igε

2
ig, however a cluster-robust variance

estimator is still used. Inspection of Ygn tells us that the main difference is in the second element of the

vector

Ỹgn =

󰀳

󰁅󰁃

󰁓ng

i=1 a
′
nxigεig󰁓ng

i=1 (b
′
nxigεig)

2 −
󰁓ng

i=1E(b
′
nxigεig)

2

󰁓ng

i=1 b
′
nxigx

′
igcn −

󰁓ng

i=1E(bnxigx
′
igcn)

󰀴

󰁆󰁄 (66)

which is Ygn specialised to the case that Ω̂n reduces to the standard heteroskedastic-robust variance estimator

when there is presumed no cluster dependence. Under this assumption that the observations are i.i.d., i.e.
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no cluster-dependence, we have that under the null hypothesis, ℓ′β = θ0,

n(ℓ′β̂ − θ0)
2

ℓ′Q̂−1
n Ω̂nQ̂

−1
n ℓ

⇒ χ2
1 (67)

n(ℓ′β̂ − θ0)
2

ℓ′Q̂−1
n Ω̃nQ̂

−1
n ℓ

⇒ χ2
1. (68)

Thus, both statistics provide for valid inference under the null hypothesis, and have the same first-order

asymptotic behaviour in that case. Let Ξ̃n := 1
n2

󰁓G
g=1E(1

′Ỹgn)
2. Comparing Ξn to Ξ̃n gives us an insight

into differences in the asymptotic behaviour between the two procedures.

Proposition 1. In the linear regression model, suppose a test of H0 : ℓ′β = θ0 can be conducted using both

a cluster robust variance estimator Ω̂n and the standard heteroskedasticity-robust variance estimator Ω̃n:

Ω̂n =
1

n

G󰁛

g=1

󰀣
ng󰁛

i=1

xig ε̂ig

󰀤󰀣
ng󰁛

i=1

xig ε̂ig

󰀤′

(69)

Ω̃n =
1

n

G󰁛

g=1

ng󰁛

i=1

xigx
′
ig ε̂

2
ig (70)

Then, under any fixed alternative θ ∕= θ0,

(ℓ′β̂−θ0)
2

ℓ′Q̂−1
n Ω̂nQ̂

−1
n ℓ

− ξ2n
√
Ξn

⇒ N (0, 1) (71)

(ℓ′β̂−θ0)
2

ℓ′Q̂−1
n Ω̃nQ̂

−1
n ℓ

− ξ2n
󰁳
Ξ̃n

⇒ N (0, 1) (72)

with Ξn ≥ Ξ̃n, with equality if and only if Var(xigεig) = 0.

Example 3, continued (Quantile Regression). In the case of quantile regression we also obtain significant

simplification, this time because the Qn matrix is estimated at a much slower rate than β and Ωn. The

reason for this is that Qn is estimated at the
√
nhn rate, as is typical for kernel density estimators, while

√
n(β̂ − β),

√
n(Ω̂n − Ωn) = OP (1). We again focus on the case L = ℓ ∈ Rp, so that we are testing the

hypothesis H0 : ℓ′β = θ0. This is also an example of when the bias term Bn is necessary to characterise the

asymptotic theory. We have the same simplification as when we considered linear hypotheses in the linear

model

bn =
(Q′

n)
−1ℓ√

ℓ′Vnℓ
(73)

cn =
2Vnℓ√
ℓ′Vnℓ

. (74)
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Here, the bias term is:

Bn = b′nE

󰀕
xix

′
i

1

hn
K

󰀕
εi
hn

󰀖󰀖
cn (75)

=
1

2
b′nE(xix

′
if

′′(0|xi)h
2
n)cn (76)

(77)

Proposition 2. Recall that RK is the roughness of the kernel K, and f(·|xi) and f ′′(·|xi) are the conditional

density of the error and the second derivative respectively. The, for the quantile regression model, we have

that √
nhn

󰀃
1
nWn − ξ2n −Bn

󰀄
󰁳
E [(b′nxix′

icn)
2f(0|xi)RK ]

⇒ N (0, 1). (78)

A direct implication of this result is that the deviations of the test statistic from the non-centrality

parameter in large samples are driven by the nonparametric estimator of the variance component Qn. This

is quite different from the local asymptotic theory which treats all estimators of Qn as equivalent, as long

as they are consistent. Here, the choice of kernel and bandwidth hn play a role in the asymptotic behaviour

of the test statistic.

4 Power Calculations and Simulations

We can use the central limit-theorem result in Theorem 1 to approximate power, just as we did in Section 2.

Using (1) as a guide, consider the rejection probability of the standard Wald test: letting qγ be the γ-quantile

of the appropriate χ2-distribution, we have that the power of a level-α test is given by:

P (Wn > q1−α) = P

󰀕 1
nWn − ξ2n√

Ξn

>
q1−α

n
√
Ξn

− ξ2n√
Ξn

󰀖
(1)

Since 1
nWn − ξ2n

P→ 0, and the lefthand side of (1) is a consistent test, we must have that ξ2n/
√
Ξn → ∞.

Thus, The only way we can approximate the power is by specifying a sequence of critical values that tends

to infinity as well. Consider any sequence of the form:

C∗
n = n

󰀕
ξ2n − tn

󰁳
Ξn +

Cn

n

󰀖
(2)

If ∆ = θ − θ0 = 0, then note that C∗
n = Cn. Otherwise, rearranging the expression, we see that:

P (Wn > C∗
n) = P

󰀕 1
nWn − ξ2n√

Ξn

> −tn +
Cn

n
√
Ξn

󰀖
(3)

Thus, we have that P (Wn > C∗
n)−Φ(tn) → 0. We can interpret Cn/n

√
Ξn as a kind of continuity-correction

that allows us to include the case ∆ = 0 which would imply Ξn = 0, in which case P (Wn > Cn) converges

to an upper-tail probability of a chi-square random variable.

One way to use these approximations to calculate power is to set C∗
n = Cn = q1−α. This leads to

choosing tn = ξ2n/
√
Ξn. This will lead to the approximation P (Wn > q1−α) ≈ Φ(ξ2n/

√
Ξn − q1−α/n

√
Ξn)
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N G Size Power Relative Error
56 5 5.57E-01 0.711 -0.296

125 10 2.53E-01 0.631 -0.207
196 15 1.28E-01 0.599 -0.165
268 20 6.98E-02 0.578 -0.135
344 25 3.63E-02 0.567 -0.118
423 30 2.01E-02 0.571 -0.125
502 35 1.13E-02 0.561 -0.108
583 40 5.75E-03 0.552 -0.094
664 45 3.38E-03 0.549 -0.090
747 50 2.10E-03 0.545 -0.083
831 55 9.70E-04 0.548 -0.087
916 60 5.70E-04 0.548 -0.087
1001 65 3.70E-04 0.547 -0.085
1089 70 2.30E-04 0.535 -0.066
1175 75 9.00E-05 0.535 -0.066
1262 80 5.00E-05 0.542 -0.078

Table 1: Asymptotic Power = 0.50

when ∆ ∕= 0. Note that this will only lead to predicted power over 1/2 asymptotically. This is akin to

using local-asymptotic power analysis in finite samples, in that for this choice of t, the approximation is not

asymptotically valid, but it is a translation of the asymptotic framework to the practical question of power

analysis. In the case of local power, the approximation works well when the alternatives of interest are small.

Another option is to consider convergence along a sequence of critical values which is indeed diverging

off to ∞. If we choose Cn = n
√
Ξn and tn = 1 − qβ , then we have that P (Wn > C∗

n) → 1 − β. These

asymptotics tell the following story: for a given alternative θ = θ0 +∆, we can approximate power as size

converges to zero. Thus, it allows practitioners to approximate a sequence of pairs (n,α) such that power is

approximately β along the sequence.

4.1 Cluster-Robust Regression Simulations

For our simulations, we focus on the linear regression model:

yig = x′
igβ + ug + εig (1)

where εig ∼ N (0,
√
1− ρσ2), ug ∼ N (0,

√
ρσ2), xig = (1, z′ig)

′, with E zigz
′
ig = I. The design follows

MacKinnon et al. (2023), including how we let clusters grow with the number of clusters. We set asymptotic

power to be 0.5, 0.80, and 0.90. We test the hypothesis β1 = 0 against a two-sided alternative. For each

sample size, we computed the size of a test using the critical value C∗
n when β1 = 0, the power, and then the

relative error of the power estimates.

The simulation results are summarised in the Tables 1-3. We removed combinations of sample size and

asymptotic power which lead to size or power in simulations equal to 1.

In general, the approximation improves for a given sample size as we increase the target power. For lower

values of power, we see that the size of the test and sample size get quite small without the relative error in

the approximation getting below 6%, however for power at 0.90, size is only 0.0269 for the approximation to

be accurate in this range. This implies that power calculations using our approach will generally be useful

in large samples, for power in the range generally useful for power analysis and sample size calculations: at
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N G Size Power Relative Error
196 15 7.20E-01 0.944 -0.152
268 20 4.27E-01 0.906 -0.117
344 25 2.64E-01 0.891 -0.102
423 30 1.68E-01 0.884 -0.095
502 35 1.05E-01 0.876 -0.087
583 40 6.66E-02 0.875 -0.085
664 45 4.27E-02 0.869 -0.079
747 50 2.72E-02 0.866 -0.076
831 55 1.75E-02 0.856 -0.065
916 60 1.07E-02 0.858 -0.067
1001 65 6.80E-03 0.856 -0.065
1089 70 4.63E-03 0.852 -0.061
1175 75 2.73E-03 0.851 -0.059
1262 80 1.61E-03 0.851 -0.059

Table 2: Asymptotic Power = 0.80

N G Size Power Relative Error
502 35 5.29E-01 0.986 -0.087
583 40 3.27E-01 0.978 -0.080
664 45 2.13E-01 0.975 -0.077
747 50 1.39E-01 0.972 -0.074
831 55 9.03E-02 0.963 -0.066
916 60 6.12E-02 0.963 -0.066
1001 65 3.96E-02 0.959 -0.062
1089 70 2.69E-02 0.956 -0.059
1175 75 1.74E-02 0.959 -0.062
1262 80 1.23E-02 0.957 -0.059

Table 3: Asymptotic Power = 0.90

least 0.80 for size in a typical range of 0.001-0.05.

5 Conclusion

In this paper we develop a first-order asymptotic theory of Wald test statistics under fixed alternatives.

We motivate this discussion by mapping the asymptotic distribution to a relative efficiency measure. Our

main finding is that this alternative asymptotic framework distinguishes between approaches to testing that

more classical approaches cannot. This opens up the possibility of comparing different variance estimators

with testing in mind. This contrasts with previous comparisons that have previously been made based on

simulation evidence, higher-order comparisons, or finite-sample criteria. Our approach applies to a broad

class of models. One conclusion of particular interest for applied researchers is that there is an asymptotic

justification for assuming there is a cost for clustering at too-coarse a level.

There are also plenty of cases of interest not considered here. Our analysis could be applied to comparing

commonly used heteroskedastic-robust variance estimators. We also did not pursue any high-dimensional

or machine learning applications here, and it would be interesting to consider how our power analysis could

provide guidance for tuning parameter choices in that setting. We could also extend the results to accomodate

settings where the variance estimator is not asymptotically normal, as is the case when the 4th moment of
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the influence function does not exist. The theory in Bentkus et al. (2007) introduces similar results in the

case of the 1-sample t-test, and similar results could be produced in a more general setting, such as in the

case of linear processes driven by i.i.d. infinite-variance innovations (see, for example, Cavaliere, Georgiev,

and Taylor (2016)).
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Giné, E. and R. Nickl (2016). Mathematical Foundations of Infinite-Dimensional Statistical Models. Cam-

bridge University Press.

Hansen, B. E. and S. Lee (2019). Asymptotic theory for clustered samples. Journal of Econometrics 210 (2),

268–290.

Hodges, J. and E. Lehmann (1956). The efficiency of some nonparametric competitors of the t-test. Annals

of Mathematical Statistics 27 (2), 324–335.

Iacone, F., S. J. Leybourne, and A. R. Taylor (2013). On the behavior of fixed-b trend break tests under

fractional integration. Econometric Theory 29 (2), 393–418.

20



Kato, K. (2012). Asymptotic normality of Powell’s kernel estimator. Annals of the Institute of Statistical

Mathematics 64 (2), 255–273.

Kim, D. and P. Perron (2009). Assessing the relative power of structural break tests using a framework

based on the approximate Bahadur slope. Journal of Econometrics 149 (1), 26–51.

Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica: journal of the Econometric Society ,

33–50.

Le Cam, L. (2012). Asymptotic Methods in Statistical Decision Theory. Springer Science & Business Media.

MacKinnon, J. G., M. Ø. Nielsen, and M. D. Webb (2023). Testing for the appropriate level of clustering in

linear regression models. Journal of Econometrics.

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. Handbook of

Econometrics 4, 2111–2245.

Omey, E. and S. van Gulck (2009). Domains of attraction of the real random vector (x,x2) and applications.

Publications de l’Institut Mathematique 86 (100), 41–53.

Powell, J. L. (1991). Estimation of monotonic regression models under quantile restrictions. In Nonparametric

and Semiparametric Methods in Econometrics and Statistics : Proceedings of the Fifth International Sym-

posium in Economic Theory and Econometrics. Cambridge [England] ; New York : Cambridge University

Press, 1991.

Shao, Q. and R. Zhang (2009). Asymptotic distributions of non-central studentized statistics. Science in

China, Series A: Mathematics 52 (6), 1262–1284.

Sun, Y., P. C. Phillips, and S. Jin (2008). Optimal bandwidth selection in heteroskedasticity–autocorrelation

robust testing. Econometrica 76 (1), 175–194.

van der Vaart, A. W. (1998, October). Asymptotic Statistics. Cambridge University Press.

21



A Proofs of Main Results

A.1 Proof of Theorem 1

Proof. We start by deriving the asymptotic expansion (4).

(L′β̂ − θ0)
′(L′V̂nL)

−1(L′β̂ − θ0)− ξ2n = (L′β̂ − θ)′(L′V̂nL)
−1(L′β̂ − θ) (1)

− 2∆′(L′V̂nL)
−1(L′β̂ − θ) (2)

+∆′(L′V̂nL)
−1∆− ξ2n (3)

= L1n + L2n + L3n. (4)

L1n = OP (1/n), and thus we will see that we can ignore it. L2n is one of three terms which depends on

L′β̂ − θ, the other two which will come out of L3n, which we will focus on now. First, we will find an

expression which is a linear functional of V̂n:

P̃1n := (L′VnL)
−1∆∆′(L′VnL)

−1 (5)

P1n := −L(2P̃1n − diag(P̃1n))L
′ (6)

∆′(L′V̂nL)
−1∆− ξ2n = tr(P1n(V̂n − Vn)) +R1n (7)

R1n = oP (󰀂L󰀂2󰀂V̂n − Vn󰀂) = oP (󰀂V̂n − Vn󰀂) (8)

Now, recalling that Vn = (Q′
nΩ

−1
n Qn)

−1 = Q−1
n Ωn(Q

′
n)

−1, we can write:

tr(P1n(V̂n − Vn)) = tr(P1n(Q̂
−1
n Ω̂n(Q̂

′
n)

−1 −Q−1
n Ωn(Q

′
n)

−1)) (9)

= tr((Q′
n)

−1P1nQ
−1
n (Ω̂n − Ωn)) (10)

− tr(2VnP1nVnQ
′
nΩ

−1
n (Q̂n −Qn)) (11)

+R2n +R3n (12)

= tr(P2n(Ω̂n − Ωn)) + tr(P3n(Q̂n −Qn)) +R2n +R3n (13)

R2n = oP (󰀂Ω̂n − Ωn󰀂) (14)

R3n = oP (󰀂Q̂n −Qn󰀂) (15)

Note that P3n simplifies to 2VnP1nQ
−1
n Now, the estimators are of the form:

Q̂n =
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β̂) (16)

Ω̂n =
1

n

G󰁛

g=1

Ψ̂g(β̂) (17)
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Thus, in general, the asymptotic distribution of the estimators will depend on the asymptotic distribution

of β̂. We will first consider Q̂. We decompose Q̂n into three parts:

Q̂n =
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β) (18)

+
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β̂)− E ˆ̇

ψig(β̂)−
1

n

G󰁛

g=1

ng󰁛

i=1

ˆ̇
ψig(β)− E ˆ̇

ψig(β) (19)

+
1

n

G󰁛

g=1

ng󰁛

i=1

E
ˆ̇
ψig(β̂)−

1

n

G󰁛

g=1

ng󰁛

i=1

E
ˆ̇
ψig(β) (20)

= J1n + J2n + J3n (21)

where with a (somewhat standard) abuse of notation, E
ˆ̇
ψig(β̂) is the expectation evaluated at β̂, i.e.

E
ˆ̇
ψig(β̂) = E

ˆ̇
ψig(b) |b=β̂ . J1n when properly centred by 1

n

󰁓G
g=1

󰁓ng

i=1E
ˆ̇
ψig(β) and rescaled will be asymp-

totically normal following a Lindeberg CLT. J3n will be asymptotically linear by the delta-method, and J2n

is negligible by assumption. The delta-method gives the additional term depending on β̂: for any matrix A,

tr(AJ2n) =
1

n

G󰁛

g=1

ng󰁛

i=1

p󰁛

k=1

a′k

󰀥
∂ E

ˆ̇
ψk

∂β
(β)

󰀦

ig

(β̂ − β) + oP (󰀂β̂ − β󰀂) (22)

where
ˆ̇
ψj is the jth row of

ˆ̇
ψ and aj is the jth column of A. We obtain a similar expression for Ω̂n:

Ω̂n =
1

n

G󰁛

g=1

Ψ̂g(β) (23)

+
1

n

G󰁛

g=1

Ψ̂g(β̂)− E Ψ̂g(β̂)−
1

n

G󰁛

g=1

Ψ̂g(β)− E Ψ̂g(β) (24)

+
1

n

G󰁛

g=1

E Ψ̂g(β̂)−
1

n

G󰁛

g=1

E Ψ̂g(β) (25)

= H1n +H2n +H3n. (26)

In a similar fashion, for any matrix A, we have that:

tr(AH2n) =
1

n

G󰁛

g=1

p󰁛

k=1

a′k

󰀥
∂ E Ψ̂k

∂β
(β)

󰀦

g

(β̂ − β) + oP (󰀂β̂ − β󰀂) (27)

where Ψ̂k denotes the kth row of Ψ̂. Note that in light of these expansions, in this setting neither Qn nor Ωn

can be estimated at a faster rate than β. This implies that β̂ cannot dominate the (first-order) behaviour of

the test statistic Wn under a fixed alternative. We now characterise the joint behaviour of β̂, Q̂n, and Ω̂n.

Let Q̃n := 1
n

󰁓G
g=1

󰁓ng

i=1E
ˆ̇
ψ(β) and Ω̃n := 1

n

󰁓G
g=1E Ψ̂g(β). For a sequence of constant matrices A1n and
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A2n, define:

a1n :=
1

n

G󰁛

g=1

ng󰁛

i=1

p󰁛

k=1

[A1n]
′
k

󰀥
∂ E

ˆ̇
ψk

∂β
(β)

󰀦

ig

(28)

a2n :=
1

n

G󰁛

g=1

p󰁛

k=1

[A2n]
′
k

󰀥
∂ E Ψ̂k

∂β
(β)

󰀦

g

(29)

where [Ajn]k denotes the kth column of matrix Ajn. Let ãn := (an + a1n + a2n). Then, we have that:

a′n(β̂ − β) + tr(A1n(Q̂n − Q̃n)) + tr(A2n(Ω̂n − Ω̃n)) (30)

= ã′n(β̂ − β) (31)

+
1

n

G󰁛

g=1

ng󰁛

i=1

tr(A1n(
ˆ̇
ψig(β)− E ˆ̇

ψig(β)) (32)

+
1

n

G󰁛

g=1

tr(A2n(Ψ̂g(β)− E Ψ̂g(β)) + oP (󰀂β̂ − β󰀂) (33)

=
1

n

G󰁛

g=1

ng󰁛

i=1

ã′n(Q
′
n)

−1ψ(Xig,β) (34)

+
1

n

G󰁛

g=1

ng󰁛

i=1

tr(A1n(
ˆ̇
ψig(β)− E ˆ̇

ψig(β)) (35)

+
1

n

G󰁛

g=1

tr(A2n(Ψ̂g(β)− E Ψ̂g(β)) + oP (󰀂β̂ − β󰀂) (36)

If we then let

Ygn :=

󰀳

󰁅󰁃

󰁓ng

i=1 ã
′
n(Q

′
n)

−1ψ(Xig)

tr(A2n(Ψ̂g(β)− E Ψ̂g(β)))
󰁓ng

i=1 tr(A1n(
ˆ̇
ψig(β)− E ˆ̇

ψig(β)))

󰀴

󰁆󰁄 (37)

Then, if Ξn := 1
n2

󰁓G
g=1 1

′EYgnY
′
ng1, we have that, given the assumptions on moment existence,

a′n(β̂ − β) + tr(A1n(Q̂n − Q̃n)) + tr(A2n(Ω̂n − Ω̃n))√
Ξn

⇒ N (0, 1) (38)

from Theorem 2 of Hansen and Lee (2019). Plugging in the pn and Pjn lead to the required result, with the

bias terms given by:

Bn = tr(P2n(Ω̃n − Ωn) + tr(P3n(Q̃n −Qn)) (39)

A.2 Proof of Proposition 1

Proof. Let Ξ0 = E(1′Ỹng)
2. When computing Ξn − Ξ0, we obtain a great simplification that when looking

at EYgnY
′
gn − E ỸgnỸ

′
gn, we note that all terms are zero, except for the second diagonal element. We can
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compute this component as a function of the moments of

[EYgnY
′
gn]2,2 − [E ỸgnỸ

′
gn]2,2 =

󰁛

i ∕=j

E(b′nx
′
igεig)

2E(b′nxjgεjg)
2 ≥ 0 (1)

where we use the notation [·]a,b to denote the (a, b) element of the relevant matrix. To see why (1) is true,

notice that the components of Ỹng and Yng are mean-zero. However, the variances are:

Var

󰀣
ng󰁛

i=1

b′nxigεig

󰀤
= ng Var(b

′
nxigεig) (2)

When the ng are asymptotically negligible, as is the case when Assumption 6 is true, then using a cluster-

robust variance estimator poses no issue for validity of inference: the variance estimator is still consistent.

However, now we must assess the variances of these variance estimators:

Var

󰀳

󰁃
󰀣

ng󰁛

i=1

b′nxigεig

󰀤2
󰀴

󰁄 = E

󰀣
ng󰁛

i=1

b′nxigεig

󰀤4

−

󰀳

󰁃E
󰀣

ng󰁛

i=1

b′nxigεig

󰀤2
󰀴

󰁄
2

(3)

= E

󰀣
ng󰁛

i=1

b′nxigεig

󰀤4

− n2
g Var(b

′
nxigεig)

2 (4)

We can write this fourth-moment in terms of the fourth cumulant, which we will denote k4(·), and use the

property that the cumulant of the sum is the sum of cumulants:

E

󰀣
ng󰁛

i=1

b′nxigεig

󰀤4

= k4

󰀣
ng󰁛

i=1

b′nxigεig

󰀤
+ 3n2

g Var(b
′
nxigεig)

2 (5)

=

ng󰁛

i=1

k4(b
′
nxigεig) + 3n2

g Var(b
′
nxigεig)

2 (6)

= ngk4(b
′
nxigεig) + 3n2

g Var(b
′
nxigεig)

2 (7)

Thus, note that:

[EYgnY
′
gn]2,2 − [E ỸgnỸ

′
gn]2,2 = Var

󰀳

󰁃
󰀣

ng󰁛

i=1

(b′nxigεig)

󰀤2
󰀴

󰁄−Var

󰀣
ng󰁛

i=1

(b′nxigεig)
2

󰀤
(8)

= ngk4(b
′
nxigεig) + 2n2

g Var(b
′
nxigεig)

2 (9)

− ngk4(b
′
nxigεig)− 2ng Var(b

′
nxigεig)

2 (10)

= 2ng(ng − 1)Var(b′nxigεig)
2 (11)

=
󰁛

i ∕=j

E(b′nxigεig)
2E(b′nxjgεjg)

2 (12)
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A.3 Proof of Proposition 2

Proof. As a result of Lemma 2, and since we know that β̂ − β = OP (1/
√
n) and Ω̂n − Ωn = OP (1/

√
n).

Standard results on kernel density estimation lead to the expression for Bn and that for any matrix A we

have that:

󰁳
nhn

󰀣
1

n

n󰁛

i=1

b′nxix
′
icn

1

hn
K

󰀕
εi
hn

󰀖
− ξ2 −Bn

󰀤
⇒ N

󰀃
0, E(b′nxix

′
icn)

2f(0|xi)RK

󰀄
(1)

B Proofs of Lemmas

B.1 Proof of Lemma 1

A Taylor expansion gives us that, for β̂ ∈ Nβ .

1

n

n󰁛

i=1

∂

∂β
ψ(Xi, β̂)− ψ̇(β̂)− 1

n

n󰁛

i=1

∂

∂β
ψ(Xi,β)− ψ̇(β) (1)

=
1

n

n󰁛

i=1

p󰁛

k=1

󰀕
∂2

∂β∂β′ψk(Xi, β̄)− E
∂2

∂β∂β′ψk(Xi, β̄)

󰀖′

(β̂ − β) (2)

= oP (1)OP (1/
√
n) = oP (1/

√
n) (3)

by the assumption of bounded derivatives and the fact that
√
n(β̂ − β) = OP (1). Since P (β̂ ∈ Nβ) → 1, for

any neighborhood Nβ , the result follows. Similarly, for

1

n

n󰁛

i=1

ψ(Xi, β̂)ψ(Xi, β̂)
′ −Ψ(β̂)− 1

n

n󰁛

i=1

ψ(Xi,β)ψ(Xi,β)
′ −Ψ(β) (4)

=

󰀣
1

n

n󰁛

i=1

ψ(Xi, β̄)
′ ∂

∂β
ψ(Xi, β̄)

′ − E
󰀕
ψ(Xi, β̄)

′ ∂

∂β
ψ(Xi, β̄)

′
󰀖󰀤

(β̂ − β) (5)

= oP (1/
√
n) (6)

B.2 Proof of Lemma 2

Proof. Boundedness of the kernel function K and the existence of integrable functions Gj which uniformly

bound the error density and the derivatives implies that

Exix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
= OP (1/

√
n) (1)

via the delta-method. Now, we focus on:
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1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
ε̂i(τ)

hn

󰀖
(2)

−
󰀣
1

n

n󰁛

i=1

xix
′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖
− Exix

′
i

1

hn
K

󰀕
εi(τ)

hn

󰀖󰀤
(3)

=
1√
n
(Gn(xx

′f̂(β̂)−Gn(xx
′f̂(β))) (4)

using the common notational shorthand Gnψ(β) =
1√
n

󰁓n
i=1 ψ(Xi,β)− Eψ(Xi,β). An implication of As-

sumption 3qreg is that there exist functions K1, K2 such that Ki is non-negative, non-decreasing, and

K = K1 − K2. Furthermore, |K|v = |K1|v + |K2|v, so we have a simple form of the total-variation norm.

Using arguments similar to those found in Einmahl and Mason (2000), we have that, for t, s ∈ Rp, letting

δt = t− β, δs = s− β,

K

󰀕
εi − x′

iδt
hn

󰀖
−K

󰀕
εi − x′

iδs
hn

󰀖
= K1

󰀕
εi − x′

iδt
hn

󰀖
−K1

󰀕
εi − x′

iδs
hn

󰀖

−
󰀕
K2

󰀕
εi − x′

iδt
hn

󰀖
−K2

󰀕
εi − x′

iδs
hn

󰀖󰀖

=

󰁝 εi−x′
iδt

hn

εi−x′
i
δs

hn

dK1(x)−
󰁝 εi−x′

iδt
hn

εi−x′
i
δs

hn

dK2(x)

This implies, via the triangle inequality,

󰀏󰀏󰀏󰀏K
󰀕
εi − x′

iδt
hn

󰀖
−K

󰀕
εi − x′

iδs
hn

󰀖󰀏󰀏󰀏󰀏 ≤
󰁝 󰀏󰀏󰀏󰀏1[ εi−x′

i
δs

hn
,
εi−x′

i
δt

hn
]
(x)

󰀏󰀏󰀏󰀏 d(K1(x) +K2(x)) (5)

Thus, using (5), we can use Hölder’s inequality to bound the mean-squared difference:

E

󰀥󰀕
K

󰀕
εi − x′

iδt
hn

󰀖
−K

󰀕
εi − x′

iδs
hn

󰀖󰀖2
󰀏󰀏󰀏󰀏󰀏xi

󰀦
(6)

≤
󰁝
E

󰀏󰀏󰀏󰀏1[ εi−x′
i
δs

hn
,
εi−x′

i
δt

hn
]
(x)

󰀏󰀏󰀏󰀏 d(K1(x) +K2(x))|K|v (7)

=

󰁝 󰀏󰀏󰀏󰀏󰀏

󰁝 x′
iδt+hnx

x′
iδs+hnx

f(ε|xi)dε

󰀏󰀏󰀏󰀏󰀏 d(K1(x) +K2(x))|K|v (8)

≤ 󰀂f(·|xi)󰀂∞|K|2v󰀂xi󰀂2󰀂t− s󰀂2 (9)

Now, by Assumption 3qreg:

E

󰀥󰀕
K

󰀕
εi − x′

iδt
hn

󰀖
−K

󰀕
εi − x′

iδs
hn

󰀖󰀖2
󰀦
= O(󰀂t− s󰀂2) (10)

Putting this all together, for any δ > 0, let Nδ/
√
n(β)} be a δ/

√
n neighborhood of β. Then, we have that

for any 󰂃 > 0,
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P

󰀣
sup

b∈Nδ/
√

n(β)

󰀏󰀏󰀏Gn(xx
′(f̂(b)− f̂(β)))

󰀏󰀏󰀏 > h1/2
n 󰂃

󰀤
(11)

≤ 1

󰂃h
1/2
n

E

󰀣
sup

b∈Nδ/
√

n(β)

|Gn(xx
′(f̂(b)− f̂(β)))|

󰀤
(12)

We now need a slight extension of a VC-class result from Giné and Nickl (2016):

Lemma 3. Let K = {(ε, x) 󰀁→ K
󰀓

ε−x′t
h

󰀔
: t ∈ Rp, h > 0}. Then K is of VC-type.

The arguments are the same as in Giné and Nickl (2016), with the finite-dimensional vector space having

dimension p+ 2, so we omit the proof.

We are now ready to use the maximal inequality of Chernozhukov, Chetverikov, and Kato (2014):

h−1/2
n E

󰀣
sup

b∈Nδ/
√

n(β)

|Gn(ψb − ψβ)|
󰀤

= O

󰀣󰁶
log n

hnn1/2

󰀤

where in the notation of Corollary 5.1 of Chernozhukov et al. (2014), we can choose σ2 = O(1/
√
n) by (10).

This means that when hn = o(log n/
√
n), we obtain the desired result:

1√
n
Gn(xx

′(f̂(b)− f̂(β))) = oP (1/
󰁳
nhn) (13)
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