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Abstract

The t-test is a standard inferential procedure in economics and finance. When

the data exhibit heavy tails, the t-test may have low power. This paper makes two

contributions. First, the rate at which power converges to 1 for data in a particular

class of heavy-tailed distributions is characterized. While classical results on the rate of

convergence of power focus on exponential rates, we find the rate to be a much slower

polynomial rate when the data have heavy tails. Second, a new testing procedure

is developed which improves upon the rates in the class of heavy-tailed distributions

under consideration. Simulation evidence shows that the efficiency gains from the new

testing procedure can be substantial.

1 Introduction

Since its introduction in Student (1908), the usual t-test for inference about the mean has

played a ubiquitous role in theory and practice in econometrics and statistics. Initially

motivated as the optimal test in the canonical inference problem with Gaussian observations,

asymptotic arguments have lead to the application of the t-test to scenarios in which the data

are not normally distributed. Heavy-tailed data are a particular departure from normality

that has been of increasing interest. This paper develops new results characterizing the
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power of the t-test when the underlying distributions have heavy tails. Furthermore, we

develop an alternative to the t-test which provides consistent inference for the mean, and

provides efficiency gains for heavy-tailed data.

The first main contribution of this paper is establishing the rate at which the power of

the t-test converges to 1 under a fixed alternative when the data exhibit heavy tails. In

classical settings, when the moment generating function exists the type-II error disappears

at an exponential rate in the sample size for any fixed alternative. We show that when the

moment generating function does not exist, under a different set of regularity conditions

type-II error disappears at a much slower rate. The worst-case rate in the class we consider

is a polynomial rate in sample size.

Our results complement existing results in the statistical and econometric literature on

using the t-test with heavy-tailed data. Recently, Müller (2019) and Müller (2020) estab-

lish slow rates of convergence of the t-test statistic to a standard normal random variable

under the null hypothesis when the data exhibit Pareto-like tails. We find that similar slow-

convergence results hold when looking at the type-II error rate under a fixed alternative.

Shephard (2020) proposes an alternative estimator in regression settings with heavy-tailed

data to deal with similar issues. Young (2021) argues that not only are heavy-tailed data

prevalent in economic applications, but heteroskedastic-robust inference is particularly sen-

sitive to heavy-tailed data.

The second key contribution of this paper is the construction a robust test statistic

which avoids the slow convergence rate of the Type-II error rate exhibited by the t-test. The

new testing procedure preserves the asymptotic local power properties of the t-test while

providing for a faster rate of convergence of the Type-II error rate to zero. Our strategy

is based on robust estimation methods in machine learning. There is a growing literature

on constructing efficient, robust estimators of the mean. This has been a departure from

classical statistics, where robust methods focused on using alternative moment conditions to

estimate a parameter of interest. Generally, there are two approaches. One approach, such as

in Sun et al. (2020), is to use an adapted procedure based on a sequence of robust estimation

problems. An alternative approach is to use sample splitting and recombine sub-sample

estimators in a robust way. This has been done in Brownlees et al. (2015), Minsker (2019),

and Mathieu and Minsker (2021), among others. Namely, we adapt and extend results in

Minsker (2022) for robust estimation of the mean to construct a test statistic based on sample

splitting and robust recombination of the data. We contribute to this literature by showing

that the key condition required for asymptotic normality under these robust recombination

procedures is an asymptotic quadratic mean differentiability condition.

We also contribute to a long history in the statistical literature on the properties of the
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t-test statistic in heavy-tailed settings. Under symmetry conditions, it is shown in Efron

(1969) that the t-test will tend to be asymptotically conservative when the tails of the data

are sufficiently heavy. In Giné et al. (1997), necessary and sufficient conditions for the t-test

statistic to be asymptotically standard-normal or subgaussian are provided. In Shao (1999)

large-deviation results for the t-test statistic are established.

This paper also contributes to the literature on asymptotic efficiency of the t-test. Hodges

and Lehmann (1956) was the first paper to propose the relative efficiency measure we adopt

in this paper, and they derived the efficiency of the t-test when the observations are normally

distributed. Recently, He and Shao (1996) derived the Bahadur efficiency of closely-related

normalized score tests. Their results show that t-tests are reasonably robust to heavy-tails

when considering the behavior of p-values. Our results show that heavy-tails lead to slow

convergence of the type-II error rate to zero, and therefore provide a new and different

perspective on the efficiency properties of the t-test.

For this paper we focus on the cases where we have an i.i.d. sample X1, . . . , Xn, with

EXi = µ and Var(Xi) = σ2. The tests we consider are hypothesis tests of the form:

H0 : µ = µ0 v.s. H1 : µ > µ0 (1)

We will mainly focus on the behavior of the t-test, however it will be useful for exposition

to also define a test where the variance is known and used. In each case the null hypothesis

is rejected for sufficiently large values of the test statistic

Zn :=

√
n(X̄ − µ0)

σ
Tn :=

√
n(X̄ − µ0)

S
(2)

where X̄ is the sample mean and S2 is the sample variance. Tn is the classic t-test statistic,

and Zn is what we will refer to as the z-test statistic. In both cases, we reject the null hy-

pothesis when the test statistic is sufficiently large. Note that the z-test statistic is generally

not available, however relative to the t-test statistic, the properties of Zn are easier to derive.

This paper proceeds as follows. In Section 2, we present our main result on the efficiency

of the t-test and compare with other common relative efficiency results in this setting. In

Section 3 we discuss how to construct robust tests. In Section 4 we provide some simulation

evidence. In Section 5 we conclude. The proofs of the main results are in Appendix A, and

supporting technical results are in Appendix B.
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2 Efficiency of the t-test

We first present the main result of this paper: a characterization of the asymptotic type-

II error rate for tests Tn when the observations have heavy tails. We then compare these

results to relative efficiency comparisons based on local asymptotic power and Bahadur

relative efficiency.

2.1 Hodges-Lehmann Relative Efficiency

The Neyman-Pearson testing paradigm evaluates tests of (1) by valuing tests which have a

low probability of rejecting H0 when H1 is true, subject to a constraint on how often H0

is rejected when H0 is true. Put another way, in general the aim is to minimize type-II

errors while constraining the type-I error rate. In settings where the observations Xi belong

to a parametric family, finite-sample optimality of tests has been thoroughly explored; see

Lehmann and Romano (2005) for a survey. In many applications researchers do not want

to assume the observations belong to a particular parametric family, and would like to

conduct semiparametric inference on a finite-dimensional functional of the distribution of

the observations. In this paper we focus on the mean as such a summary of interest. In these

semiparametric settings, practitioners focus their attention on tests which are asymptotically

valid. Most conventional tests result in the type-II error rate converging to 0 asymptotically,

presenting an inherent challenge in comparing tests which can primarily be characterized

with asymptotic methods.

When comparing two testing procedures, the natural mode is relative efficiency. Let

us consider two tests φ1,n and φ2,n for testing (1). For a given Type-I error rate α, and

alternative µ, let h(n) be the smallest sample size n′ such that if φ1,n = 1 − β at µ, then

φ2,n′ ≥ 1 − β. Comparing the ratio h(n)/n when µ → µ0 as n → ∞ leads to the relative

efficiency comparison of Pitman (1949), which has been the dominant method of comparison

in econometrics and statistics; see Engle (1984), Newey and McFadden (1994), van der

Vaart (1998), and Lehmann and Romano (2005) for a discussion. Also considered has been

comparing tests when α → 0 as n → ∞. This leads to the comparison of Bahadur (1960); see

also Bahadur (1967). For a broad overview of these and other relative efficiency measures,

see Serfling (2009). In this paper we consider comparisons when β → 0 because α and µ are

fixed. First proposed in Hodges and Lehmann (1956), it turns out that for consistent tests

we have that

lim
n→∞

h(n)

n
= lim

n→∞

logP (φ2 rejects H0)

logP (φ1 rejects H0)
=: e(φ1,φ2) (3)

where the probabilities are evaluated for µ ∕= µ0 is fixed. This implies that when the limiting
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ratio of log-probabilities exists, we can compare two tests asymptotically in a Neyman-

Pearson sense without requiring µ → µ0 as n → ∞. Clearly, if e(φ1,φ2) > 1, we prefer φ2,

and visa versa when e(φ1,φ2) < 1. In general, (3) is computed by evaluating:

lim
n→∞

− 1

n
logP (φi rejects H0) (4)

For consistent tests, if this limit exists it must be non-negative. It also turns out that the

limit in (4), is bounded above by the Kullback-Leibler divergence K(P0, P1) between the set

of null distributions P0 and the true distribution P1, where we define:

K(P0, P1) = inf
P∈P0

!

R

log

"
dP

dP1

#
dP .

Here, K(P0, P1) = ∞ if there does not exist any P ∈ P0 such that P is absolutely continuous

with respect to P1. Under the assumption that the sample space is compact, it has been

shown in Canay and Otsu (2012) that (2) lead to efficiency tests in that (4) is equal to

K(P0, P1).

Our main result is that the t-test achieves the lower-bound of 0 when the observations

have heavy-tails. By heavy-tails, in this paper we mean that for all ε > 0, we have that:

sup
s∈(−ε,ε)

E esXi = ∞ (5)

Equivalently, the moment generating function diverges in any neighborhood of zero. We

allow for one tail of the distribution to be light, in that the supremum can be finite if we

take the supremum over s ∈ (−ε, 0) or (0, ε), but at least one tail will be heavy in what

follows.

Before stating our main result, we will discuss the necessary assumptions in turn. Our

first assumption is standard for validity of the t-test.

Assumption 2.1. We assume the Xi are i.i.d. with mean µ, variance σ2 < ∞, with

common distribution function F (x).

This first assumption leads to the t-test providing for valid inference, and in fact achieving

the semiparametric efficiency bound, in the sense of Pitman efficiency, asymptotically; see

Levit (1976), Newey (1990), and Newey and McFadden (1994).

This next assumption implies (5), but is slightly stronger, and provides us the main

regularity conditions we need for the results.
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Assumption 2.2. We assume that for all λ > 0:

lim
x→∞

logP (|Xi| > λx)

logP (|Xi| > x)
= 1 (6)

We also assume that the following tail-balance conditions holds:

lim
x→∞

P (Xi > x)

P (|Xi| > x)
= p ∈ [0, 1] (7)

Furthermore, we assume the heavier tail is subexponential: for any y ∈ (−∞,∞),

lim
x→∞

P (Xi > x+ y)

P (Xi > x)
= 1, p ∈ (0, 1]

lim
x→∞

P (Xi < −x+ y)

P (Xi < −x)
= 1, p ∈ [0, 1)

In Assumption 2.2, we assume that the cumulative hazard function ofXi or −Xi is slowly-

varying. A function L is slowly-varying if for all λ > 0, limx→∞ L(λx)/L(x) = 1. Here, (6)

implies (5), however it includes some distributions, such as the lognormal distribution, with

all finite moments. Also included are distributions with approximately polynomial tails, such

as student-t and Pareto distributions. Distributions with two thin-tails such as the Gaussian

or exponential distribution are not included, although we allow for one of the two tails to

be light-tailed. Our proof methods focus on the behavior of the maximum absolute order

statistic, maxi |Xi|. The tail-balance condition in (7) rules out scenarios where we cannot

determine the behavior of maxi |Xi| because the tails of F are fluctuating between radically

different behavior. An example of what is ruled out are distributions which interpolate

between different rates of polynomial decrease, no matter how far out in the tail we look.

The assumption of subexponential tails is standard in the literature on large deviations of

heavy-tailed sums. In Cline and Hsing (1989), lower-level technical conditions are used to rule

out heavy-tailed random variables which are not subexponential, however for our purposes it

is both simpler to state subexponentiality as an assumption, and easier for the reader to check

which distributions satisfy this assumption. All random variables with regularly-varying tails

satisfy this assumption, as well as lognormal random variables. There are subexponential

random variables which do not satisfy (6), such as Weibull random variables with infinite

moment generating function. Likewise, there are random variables which satisfy (6) which

are not subexponential; see e.g. Foss et al. (2011), Section 3.7. It would be of interest to

derive our results for all subexponential random variables, however this is outside the scope
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of the present paper.

Assumption 2.3. The absolute observations |Xi| are in the maximum domain of attraction

of the Frechét distribution or Gumbel distribution. When the |Xi| are in the maximum

domain of attraction of the Gumbel distribution, we also require the Von-Mises condition is

satisfied. We assume that F has continuously differentiable density f , and we define:

h+(x) :=
f(x)

1− F (x)
, h−(x) :=

f(−x)

F (−x)

These are the hazard functions for Xi and −Xi respectively. For |Xi| in the domain of

attraction of the Gumbel distribution, we require that the appropriate von Mises condition(s)

is met:

p < 1 : lim
x→∞

d

dt

1

h+(t)

$$$$
t=x

= 0, p > 0 : lim
x→∞

d

dt

1

h−(t)

$$$$
t=x

= 0 (8)

Furthermore, we require that h+(t)
√
t → 0 and h−(t)

√
t → 0 when p ∈ (0, 1] or p ∈ [0, 1)

respectively.

These assumptions are natural in the following sense: in the case of heavy-tailed data,

Type-II errors are generated by the maximum absolute order statistics. Thus, we require

some regularity in the behavior of these extrema to be able to formulate our results. The

Von Mises condition is satisfied, for example, by lognormal-type random variables, i.e. where

for some η > 0,

lim
x→∞

− logP (|Xi| > x)

logη(x)
= 1

In the case of maxi |Xi| being in the domain of attraction of a Frechét random variable,

necessary and sufficient conditions are that there exists γ > 0 and a slowly-varying function

L such that:

lim
x→∞

P (|Xi| > x)

x−γL(x)
= 1 (9)

This implies that 1 − F (x) + F (−x) is regularly-varying; see Bingham et al. (1989) for an

exhaustive treatment of regularly varying functions, including their application in probability.

Examples satisfying (9) include all student-t and Pareto random variables. Recall that

in the case of the t-test, we choose a critical value Cα so that under the null-hypothesis

P (Tn > Cα) → α. We place some restrictions on the range of Cα, and therefore α, which we

allow.
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Assumption 2.4. We require Cα > 1.1

Assumption 2.4 restricts which the range of α we consider for the asymptotic size of

the test. This requirement is a unifying requirement. Results can be derived for Cα ≤ 1,

however they cannot be stated as succinctly. When Cα > 1, it turns out that observations

from both tails contribute to the type-II error rate when the tail balance parameter satisfies

p ∈ (0, 1). This is different from the case where σ is known: in this case, especially small

values of Zn that lead to type-II errors only come from the left tail of the distribution. When

the variance is being estimated, large observations from the right tail contribute to shrinking

the test statistic and producing type-II errors.

Theorem 1. Recall that Tn is the typical t-test statistic given by (2). When the distribution

of the Xi satisfies Assumptions 2.1-2.4, we have that whenever EXi = µ > µ0, then for

R(n) = − log nP (|Xi| > n), we have that:

lim
n→∞

− logP (Tn < Cα)

R(n)
= 1 (10)

Remark 1. One immediate implication of Theorem 1 is that the convergence rate of the

type-II error is slower than exponential, that is to say:

lim
n→∞

− 1

n
logP (Tn < Cα) = 0

This implies that the t-test achieves the lower bound among consistent tests in (4). Thus,

the t-test is far from efficient in a Hodges-Lehmann sense. The proof of (10) involves con-

structing a lower and upper bound for logP (Tn < Cα). The lower bound is valid un-

der weaker conditions than those used in the theorem. This implies that the conclusion

limn→∞ n−1 logP (Tn < Cα) = 0 holds for a much broader class of distributions than those

we consider here.

Remark 2. When the observations are in the Frechét domain of attraction, we can also choose

R(n) = (γ − 1) log n. This will inform our strategy for constructing a robust test statistic

later. If we can construct a test φ such that for some sequence an:

lim
n→∞

− logP (φ rejects H0)

an
≥ 0

and R(n)/an → 0, then the relative efficiency of φ to the t-test will be ∞.

1Implying we the level for testing (1) is at most 0.158
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Remark 3. The proof is based on techniques from Cline and Hsing (1989), Mikosch and

Nagaev (1998), and Lehtomaa (2017). Those papers develop large deviation results for sums

of i.i.d. random variables with heavy tails, including regularly varying tails. The essential

idea is that when the tails of the Xi are heavy, asymptotically large-deviation probabilities

of a sum are equal to large deviations of the maximum. The conditions used here are strictly

stronger than those used the probability literature, and therefore there is some room to gain

generality in the theorem as it stands now.

Theorem 1 is a negative result, in that it highlights an inefficiency of the t-test when

dealing with heavy-tailed data. It is also instructive in that it gives an asymptotic justifi-

cation for robust methods. Later in the paper we will discuss a couple of robust procedures

that can improve the efficiency of hypothesis tests in this heavy-tailed setting.

2.2 Comparison With Local Asymptotic Power

The most common approximation of the asymptotic power of tests is local asymptotic power.

Under Assumption 2.1 we have that

Tn ⇒ N (0, 1)

under the null hypothesis. To compute relative efficiency in the sense of Pitman, we introduce

a sequence of alternatives µn, such that EXi = µn = µ0 + δ/
√
n. Under this sequence of

alternatives, we have that the test statistics converge to shifted normal random variables:

Tn ⇒ N (δ/σ, 1) (11)

An implication of (11) is that under a local asymptotic power comparison, the power prop-

erties of each test are the same for all distributions with the same variance σ2. Furthermore,

the t-test is semiparametric minimax efficient, as discussed previously. By contrast, in Theo-

rem 1, not only does the asymptotic power depend on the variance σ, it also depends on the

tail properties of the distribution, namely log nP (|Xi| > n). In the case where P (|Xi| > x)

is regularly varying, for example, the tail index γ plays a role. Thus, our results provide for

a finer distinction relative to local asymptotics in this setting.

2.3 Bahadur Relative Efficiency

Another notion of relative efficiency, due to Bahadur (1960), is to compare the rate at which

the p-values of a test converge to 0 under a fixed alternative. If we denote the sequence of
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distribution functions of a test statistic Wn under the null as Gn, where we reject when Wn

is large, then the sequence of p-values is given by:

1−Gn(Wn). (12)

In He and Shao (1996), it is shown that the p-values converge to zero under a fixed

alternative at an exponential rate, and in fact under Assumption 2.1:

lim
n→∞

− 1

n
log(1−Gn(Tn)) = − log

%
sup
c≥0

inf
t≥0
E exp

&
2tcXi −

∆

σ

t(c2 +X2
i )'

1 +∆2/σ2

()
. (13)

Note that since the second term inside the exponent is positive and quadratic in Xi, t will

always be chosen larger than 0. Therefore, this result implies that for the t-test statistic,

p-values converge to 0 at an exponential rate. Notice that this suggests in heavy-tailed cases

that Tn should be used rather than Zn. Suppose that P (−Xi > x) is regularly-varying with

index γ, i.e. the left-tail of the distribution of the Xi is approximately polynomial. For Zn,

under Assumptions 2.1-2.4, by Theorem 3.3 in Cline and Hsing (1989),

lim
n→∞

− 1

log n
log (1−Gn (Zn)) = γ − 1 (14)

Thus, when using Bahadur relative efficiency to compare Zn and Tn, Tn appears to have

additional robustness of well-controlled p-values. Essentially, (13) says that under the null

hypothesis, when n is large the test statistic has thin tails. Thus, large p-values disappear

at an exponential rate. This does not, however, say anything about the probability that a

given p-value is under the desired significance level. Since test statistics and p-values are

in 1-to-1 correspondence, an interpretation of Theorem 1 is that when Xi has heavy tails,

the probability a given p-value exceeds the desired significance level is disappearing at a

polynomial rate. In this sense, Bahadur relative efficiency can be framed as a comparison

based on the behavior of the maximum p-value, and Hodges-Lehmann relative efficiency is

based on an expectation over the p-values. This difference leads to Bahadur relative efficiency

implying Zn has worse properties than Tn. On the other hand, consider the case when the

left tail of Xi is thin, or there exists a s > 0 such that E e−sXi < ∞. In this case, it turns

out that

lim
n→∞

logP (Zn < Cα)

logP (Tn < Cα)
= 0

even when the right tail of the distribution of the Xi is heavy. In the latter case, Tn will still

have slower than exponential rates of convergence. If the left tail is heavy, the two tests will

be equivalent. Thus, in a Hodges-Lehmann setting, we would weakly prefer the test with
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known variance when the variance is in fact known.

3 A New Robust Testing Procedure

3.1 Naive robust tests via subsampling

We now propose a new testing procedure designed to address the inefficiencies of the t-test.

We first motivate the testing procedure then discuss the construction of the test statistic.

There has been recent work in the machine learning literature on obtaining concentration

guarantees for estimators. Specifically, this literature has focused on constructing estimators

θ̂ of a parameter θ such that:

logP (‖θ̂ − θ‖ > δ) < −g(δ)

for certain choices of δ and convex g. See Minsker (2019), Sun et al. (2020), and Mathieu and

Minsker (2021) for examples. We can rearrange (10) to see how this type of thinking could

help us. Under a fixed alternative, n−1/2Tn
P→ ∆/σ. Consider then that we can re-write our

type-II error as:

P (Tn < Cα) = P

"
1√
n
Tn −

∆

σ
< −∆

σ
+

1√
n
Cα

#

Thus, we can interpret the shortcoming of the t-test as a failure of the test statistic to be

sufficiently concentrated around the non-centrality parameter ∆/σ in large samples.

The idea we use to construct a robust test is to use sample splitting and robust recom-

bination to generate test statistics with thinner tails, and more concentration around the

non-centrality parameter, under the alternative. Start by splitting the sample into k groups

of size m, so that km = n. On each sub-sample, construct the t-statistic Tj,m, j = 1, . . . , k.

Let ρ be a symmetric, convex function which is minimized at 0. Consider the statistic:

τ̃ = argmin
t

k*

j=1

ρ(Tj,m −
√
mt)

When ρ(t) = 1
2
t2,

√
mτ̃ = 1

k

+k
j=1 Tj,m. When ρ(t) = |t|,

√
mτ̃ = Median(Tj,m). In general,

we might expect that:

√
nτ̃ =

%
1

k

k*

j=1

ρ′′(Tj,m)

)−1

1√
k

k*

j=1

ρ′(Tj,m) + oP (1)
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If we choose ρ such that ρ′ is bounded, then we now have a test-statistic with a bounded

influence function. Unfortunately, this procedure will tend to be inefficient. Generally, the

asymptotic variance of
√
nτ̃ will be larger than 1. This leads us to seek a procedure that

retains efficiency, while still leading to a robust testing procedure.

3.2 Efficient tests based on subsampling

The results of the previous section are unsatisfactory since the proposed procedure is not

permutation invariant. Conditional on an observed data set, different sample splits could

lead to different empirical conclusions. A solution, which also turns out to improve efficiency,

is to extend the results of the previous section to permutation-invariant analogues. To start,

we define Am,n as the set of all subsets of {1, . . . , n} of size m. An element Aj ∈ An,m is

therefore:

Aj = {j1, . . . , jm}, ji ∕= jk, i ∕= k

Given our sample of i.i.d. observations, we can compute the t-statistic on each subsample:

for each Aj, we use {Xjk}jk∈Aj
to compute a t-statistic, denoted Tm(Aj). Let ρ be a convex

function. We will use
√
nτ̂n,m as our new test-statistic, where

τ̂n,m := argmin
t

1,
n
m

-
*

Aj∈An,m

ρ
,
Tm(Aj)−

√
mt

-
. (15)

We will generally abbreviate to Tj,m = Tm(Aj) where there is no confusion. Our first set

of additional assumptions concern the smoothness of ρ:

Assumption 3.1. We assume that ρ is three-times continuously differentiable, ‖ρ′′‖∞, ‖ρ′′′‖∞ <

∞, ρ′′(x) ≥ 0 for all x, and E ρ′′(Z) > 0, where Z ∼ N (0, 1).

The boundedness of the derivatives of ρ ensures that the objective function in (15) is

well-approximated by a quadratic function in large samples. The additional conditions on

the second derivative are necessary for consistent inference for the mean, and essentially

guarantee that the objective function is sufficiently convex near 0.

The next assumption considers a certain type of compatibility between ρ and the sequence

of t-statistics.

Assumption 3.2. We assume that the sequence ρ′(Tj,m)
2 is uniformly-integrable.
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This assumption will trivially be met when ρ′ is uniformly bounded. Simple choices

include the smoothed-Huber function, ρ(x) =
√
1 + x2− 1 and log-cosh ρ(x) = log(cosh(x)).

When ρ′ is not bounded, then we need some knowledge of when the moments of E ρ′(Tj,m)

exist. One set of simple sufficient conditions is E |Tj,m|2+δ < ∞ for all m and |ρ′(t)|/|t| → 0

as t → ±∞. See Jonsson (2011) for sufficient conditions for the existence of moments of the

t-statistic. One such case we briefly mention here is that when Xi has a density function f(x)

such that f(x) is eventually monotone: there exist M−, M+ such that for all x < y < M−,

f(x) < f(y), and for all x > y > M+, f(x) < f(y).

Let Tj,m(X−1, x) denote the t-statistic formed from X2, . . . , Xn and x. We also note that

the uniform integrability condition in Assumption 3.2 and the smoothness assumption in

Assumption 3.1 imply, for the t-statistic, that:

E(
√
m(E[ρ′(Tj,m(X−1, X1))− ρ′(T ′

j,m(X−1, X
′
1))|X1]− E ρ′′(Tj,m)) → 0 (16)

whereX ′
1 is independent ofX1, but identically distributed. Thus, our results can be expected

to hold for a broader class of statistics that satisfy the uniform integrability condition for a

suitable choice of ρ. The additional part to show is that the contribution of an individual

observation to the distribution of the statistic disappears at a sufficiently fast rate in sample

size. This property holds for the t-statistic, and can be expected to hold for other statistics

which are asymptotically linear and satisfy a Central Limit Theorem.

Our final assumption relates to the choice of m.

Assumption 3.3. We assume that m/n → 0 and m → ∞.

This assumption starts to make clear the sense in whichm/n serves the role of bandwidth.

If m does not go to ∞, then we cannot guarantee that our procedure will be consistent for

inference on the mean when the data are skewed. m/n → 0 plays an important role both

in the quadratic approximation to the objective function in (15) as well as the central limit

theorem we must apply. Lastly, we define:

τn,m :=
1√
m

E ρ′(Tj,m)

E ρ′′(Tj,m)

We are now ready to state the main result of this section.

Theorem 2. Under Let Assumptions 2.1, 3.1, and 3.2, let τ̂n,m be defined as in (15). Fur-
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thermore, let EXi = µ0 + δ/
√
n. Then, we have that:

√
n(τ̂n,m − τn,m) ⇒ N (δ/σ, 1) (17)

The theorem states
√
nτ̂n,m has the same asymptotic variance as the t-statistic, but it will

generally be biased. Apart from the bias term, observe that the asymptotic distribution of

the test statistic does not depend on ρ. Namely, when the bias is asymptotically negligible,

the choice of ρ has no impact on the first-order properties of the test statistic. When is τn,m

small? If ρ′ is an odd function and the Xi are symmetrically distributed then τn,m = 0 for

all n,m. More generally, if ‖ρ′‖∞ = C < ∞, then we can bound τn,m using the convergence

rate of the t-statistics to normal random variables

E ‖ρ′(Tj,m)‖ = E ‖ρ′(Tj,m)− ρ′(Z)‖ ≤ 2C sup
x∈R

|P (Tj,m < x)− Φ(x)|.

Thus, we can bound the distance τn,m is from 0 by Berry-Esseen type bounds. Namely, if

there exists ε ∈ (0, 1] such that E |Xi|2+ε < ∞, then
√
nτn,m = O(

√
nm−(ε+1)/2). Thus, if

we choose m such that n/m1+ε → 0, then
√
nτn,m → 0. We have shown that using

√
nτ̂n,m

preserves the first-order local efficiency properties of the t-statistic. What about the large

deviation properties? The next result says that constructing consistent tests which avoid

worst-case rates of convergence for the Type-II error rate is straightforward in this setting.

Theorem 3. In addition to the assumptions for Theorem 2, assume that ρ is symmetric

‖ρ′‖∞ < ∞, and EXi = µ0 +∆ rather than the local-alternative. Then:

lim
n→∞

−m

n
logP (

√
nτ̂ < Cα) ≥

1

4
(18)

An important consequence of Theorem 3 is that for all of the heavy-tailed distributions

considered in this paper, if m = anζ for some ζ,

lim
n→∞

logP (
√
nτ̂ < Cα)

logP (Tn < Cα)
= ∞

Thus, the new testing procedure is also more efficient than the t-test under Hodges-Lehmann

asymptotic relative efficiency.
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4 Simulations

We provide simulation results calibrated to arithmetic returns from the SPDR S&P 500 ETF

Trust (SPY), as in Shephard (2020). We simulate data from the following DGP:

yi = (zi − ψ)β1 + εi

zi = ψ + V σz

εi ∼ N (0, (1 + |zi − ψ|ζ)C2) (19)

We choose three different distributions for V :

.
ν

ν − 2
Vν ∼ tν , ν ∈ {νl, νh}

exp{−v/4}V ∼ N (0, η−1
i ), log ηi ∼ N (0, v), v ∈ {vl, vh}

where tν is a student-t distribution with ν degrees of freedom. Here, zi are calibrated to match

the weekly returns. We use data from 19th November, 2018, through 18th November, 2022.

The first two years of data exhibit more volatility due to inclusion of the start of the global

pandemic in spring of 2022. We use the first two years to estimate νh and vh for our “higher

volatility” setup. We used the full two years to calibrate νl and vl. We set νh = 2.219,

νl = 3.352, vl = 0.933, and vh = 1.663. We then set σZ so that the standard deviation

matches the sample standard deviation of the returns during the relevant time period, and

ψ is likewise the sample mean for each time period. We assume ψ is known, so that we can

perform a heteroskedasticity-robust test of the null H0 : β1 = 1 using the t-statistic formed

from the observations Xi = (zi − ψ)(yi − (zi − ψ)β0). Unlike Shephard (2020), we include

conditional heteroskedasticity. We do this so that the t-test is clearly a reasonable thing to

do here, rather than a more efficient procedure that leverages homoskedasticity. The form

of (19) is motivated so that for our choice of ζ, Tn provides asymptotically valid inference

under the null, and we choose ζ to be 0.12 in the high-volatility case when zi are student-t,

and set ζ = 0.5 in the lower-volatility setting. For the lognormal mixtures, we set ζ = 1.0. C

is chosen so that E ε2i = 4, as in Shephard (2020). We set the null value of β as β1,0 = 1. Our

simulations will display the power of the relevant tests as n increases, for a fixed alternative.

We expect our new procedure to improve upon the standard t-test, so we chose β1,1 for each

simulation setting so that the power of our new test was 0.99 when n = 250.

To investigate the finite-sample power properties of our new testing procedure, we per-

formed a simple one-sided test for the mean with samples ranging from 50 to 500 observa-
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tions. We also chose different growth paths for m of the form m = anε for the robust testing

procedure. The choices for ε were (0.9, 0.5, 0.2, 0.1). a was chosen so that the smallest m

would be 30, the classical rule of thumb used in introductory statistics for the Central Limit

Theorem to hold. For the choice of ρ we use the smoothed-Huber function:

ρ(x) =
√
1 + x2 − 1

Figure 1: Comparison of New Test with t-test
This figure plots the power when testing β1 = 1 against a one-sided alternative β1 > 1. The power
curves have been (point-wise in sample size) size-corrected. The dashed line corresponds to the
classic t-test, while the other four lines correspond to the new testing procedure, with different
choices for how the size of subsamples m grows with sample size.

In Figure 1, we plot power curves as a function of sample size. All power calculations are

performed after correcting the critical values so that the size of all tests is 0.01. Notice that

the sample size required by the t-test to achieve a particular power level is uniformly larger

than the sample size required by the new robust procedure. Furthermore, the new test gets

arbitrarily close to 1 for all data generating processes considered, as sample size increases,

whereas the power curve for the traditional t-test flattens out considerably as the sample

size gets large, especially when the data are student-t. This supports the claim in Theorem

3 that the new testing procedure leads to better Type-II error properties. Also notice that

the choice of ε does not matter much qualitatively here, with the possible exception of a
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small power loss when the tails are heaviest.

5 Conclusion

This paper provides new results on the efficiency of t-tests when the data have heavy tails.

These results are the first to demonstrate the inefficiency of the t-test with heavy-tailed data

in an asymptotic setting. Our results complement recent work studying the performance of

test statistics under the null hypothesis when the data exhibit heavy tails.

It would be desirable to extend the main results to cases in which the observations have

“nearly” exponential tails, such as Weibull-type tails. Other useful extensions include ex-

tending these results to classical Wald statistics and more generally to GMM-type statistics.

It would also be interested to consider how to use Theorem 10 to conduct power analysis;

currently, the limiting type-II error rate diverges as the alternative approaches the null, im-

plying that higher order terms and knowledge of the function R might be useful in practice.

It is of course an open question if it is possible to recover Hodges-Lehmann efficiency for

semiparametric inference on the mean in these heavy-tailed settings.
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A Proofs of Main Results

A.1 Proof of Theorem 1

In this subsection we provide a proof of (10). The result will follow immediately from

Lemmas 1-5. The application to the testing problem is new, however we should note that

many of the proof techniques closely follow those used in Cline and Hsing (1989), Mikosch

and Nagaev (1998), Brosset et al. (2022), and assuredly other papers in the literature on

large deviations of sums of heavy-tailed random variables. We begin with an equivalency

relationship that has been previously observed, in e.g. Shao (1997) and Victor et al. (2009):

[Tn < Cα] = [Sn < cnVn] (20)

where cn → Cα monotonically from above as n → ∞, and Sn =
+n

i=1 Zi, V
2
n =

+n
i=1 Z

2
i ,

and Zi = (Xi − µ0)/σ. It is also helpful to denote Yi = Zi − ν, so that EYi = 0 and

Var(Yi) = 1, and Qn =
+n

i=1 Yi. It is also helpful to denote Sn,i and Qn,i as Sn − Zi and

Qn − Yi respectively. Dependence of cn on n is not important for our purposes, and thus we

will omit the subscript. Recall that since R(n) = − log nP (|Xi| > n), and E |Xi| < ∞, we

have that nP (|Xi| > n) → 0, and thus for n large enough, R(n) > 0.

We begin by providing a lower-bound for the type-II error rate P (Tn < Cα). The following

lemma summarizes our results:

Lemma 1. Assume the conditions of Theorem 1 hold. Then, we have that:

lim
n→∞

logP (Tn < Cα)

R(n)
≥ −1

Proof. We split things into two cases. We begin by assuming the left tail of Xi is the heavier

tail, which is equivalent to saying p = 0, in the notation of Assumption 2.2.
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(Case 1) In this case p = 0. We have that for any K > 0,

P (Tn < Cα) = P (Sn < cVn) ≥ P (Sn < cVn, min
i

Zi < −Kn)

(2−∞ norm inequality) ≥ P (Sn < cmax
i

|Zi|, min
i

Zi < −Kn)

≥ P (Sn < c(−min
i

Zi), −min
i

Zi > Kn)

≥ P (Sn < cKn,min
i

Zi < −Kn)

(Bonferroni inequality) ≥
n*

i=1

P (Sn < cKn,Zi < −Kn)

−
*

i ∕=j

P (Sn < cKn, Zi < −Kn, Zj < −Kn)

≥
n*

i=1

P (Sn,i < (1 + c)Kn, Zi < −Kn)− n(n− 1)

2
P (Zi < −Kn)2

= nP (Qn,i < (1 + c)Kn− (n− 1)ν)P (Zi < −Kn)

− n(n− 1)

2
P (Zi < −Kn)2

= nP (Zi < −Kn)

·
"
P (Qn,i < (1 + c)Kn− (n− 1)ν)− n− 1

2
P (Zi < −Kn)

#

Now, as long as we choose K > ν
c+1

, we have that:

log

/
P (Qn,i < (1 + c)Kn− (n− 1)ν)− n− 1

2
P (Zi < −Kn)

0
P→ 0

by the weak law of law of large numbers. Thus, in this case, we have that:

lim
n→∞

logP (Tn < Cα)

R(n)
≥ lim

n→∞

log nP (Zi < −Kn)

R(n)
= −1 (21)

where we have used the fact that logP (Yi < −Kn) is slowly-varying, Lemma 9, and

Xi is subexponential.

(Case 2) In this case we have that p ∈ (0, 1]. Here, recall that we require Cα > 1. Note that

if Cα > 1, then c > 1 as long as n > 1 + c/
√
c2 − 1. Now, similar to before, we have
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that, for any K > 0,

P (Tn < Cα) = P (Sn < cVn) ≥ P (Sn < cVn, max
i

Zi > Kn)

≥ P (Sn < cmax
i

|Zi|, max
i

Zi > Kn)

≥ P (Sn < cmax
i

Zi, max
i

Zi > Kn)

≥
n*

i=1

P (Sn < cmax
i

|Zi|, Zi > Kn)

−
*

i ∕=j

P (Sn < cmax
i

|Zi|, Zi > Kn, Zj > Kn)

≥
n*

i=1

P (Sn,i < cmax
i

|Zi|− Zi, Zi > Kn)

− n(n− 1)

2
P (Zi > Kn)2

≥
n*

i=1

P (Sn,i < (c− 1)Zi, Zi > Kn)

− n(n− 1)

2
P (Zi > Kn)2

≥ nP (Zi > Kn)

"
P (Qn,i < (c− 1)Kn− (n− 1)ν)− n− 1

2
P (Zi > Kn)

#

Thus, just as before, if K > ν
c−1

,

log

/
P (Qn,i < (c− 1)Kn− (n− 1)ν)− n− 1

2
P (Zi > Kn)

0
P→ 0

Therefore, (21) holds in this case as well, by a similar argument to that used in the

previous case.

Next, we obtain an upper bound, summarized by the following lemma:

Lemma 2. Assume the conditions of Theorem 1 hold. Then, we have that:

lim
n→∞

logP (Tn < Cα)

R(n)
≤ −1
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To prove this lemma, we utilize the following decomposition:

P (Tn < Cα) = P

%
Tn < Cα,

1

i

{Zi ∈ In}
)

+ P

%
Tn < Cα,

2

i

{Zi /∈ In}
)

= Un + Pn

where In is some interval of the form [−ln, un], ln, un > 0, 1
n
ln,

1
n
un → q ∈ (0,∞).

The following decomposition is quite useful. Let In = [−ln, un], ln, un > 0, ln, un → ∞.

Then, we have that:

P (Tn > Cα) = P

%
Tn > Cα,

1

i

{Zi ∈ In}
)

+ P

%
Tn > Cα,

2

i

{Zi /∈ In}
)

= Un + Pn

Bounding logPn is straightforward. We will assume the same conditions used in Theorem 1,

however note that in particular the requirement Cα > 1 is not used here when constructing

the upper bounds, and therefore it is an open question of whether that requirement is

necessary in obtaining the type-II error convergence rates in this paper.

Lemma 3. Under the conditions of Theorem 1, we have that:

lim
n→∞

logPn

R(n)
≤ −1

Proof. We use a simple upper found for Pn to start; for any K > 0, we have:

Pn = P

%
Tn > Cα,

2

i

{Zi /∈ In}
)

≤ P

%
2

i

{Zi /∈ In}
)

≤ nP (Zi /∈ In)

= nP (Zi < −ln) + nP (Zi > un)

= nP

"
Zi < −n

ln
n

#
+ nP

3
Zi > n

un

n

4

The result follows from Lemma 9 and the slow-variation of R(n) and logP (|Zi| > n).
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Now, we need to bound Un. As mentioned at the beginning of the appendix, the expo-

nential inequalities used here draw heavily from such papers on large deviations for heavy

tailed sums, such as Cline and Hsing (1989), Mikosch and Nagaev (1998), and Brosset et al.

(2022). An interpretation of the following lemma is that truncated heavy-tailed random

variables behave like thinner-tailed variables, even when the truncation point is diverging to

infinity at the n-rate. In particular, in Mikosch and Nagaev (1998), in the proof of Theorem

6.1, it is clear that for random variables with regularly-varying tails, the truncated versions

behave like random variables with higher tail indices, as far as tail-properties are concerned.

Lemma 4. Under the conditions of Theorem 1, we have that:

lim
n→∞

logUn

R(n)
≤ −1

Proof. We first split up Un further; for any ω ∈ (0, 1),

Un = P

%
Tn > Cα,

1

i

{Zi ∈ In}
)

= P

%
Sn < cVn,

1

i

{Zi ∈ In}
)

= P

%
−Qn > ωnν,

1

i

{Zi ∈ In}
)

+ P

%
Vn >

1− ω

c
nν,

1

i

{Zi ∈ In}
)

= Un1 + Un2

We will deal with Un2, as Un1 can be handled in a similar fashion. Let Ui = Z2
i . Then,

we will let ln = un, so that Zi ∈ In if and only if Ui ≤ u2
n. Let yn = 1−ω

c
nν, and G be the

distribution function of Ui, and notice that since log(1 − F (u) + F (−u)) is slowly varying,
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so is log(1−G(u2)). Using Markov’s inequality, for some sequence sn ≥ 0, with sn → 0,

Un2 ≤ e−sny2n

%! u2
n

0

esnuG(du)

)n

= e−sny2n

%! β/
√
sn

0

esnuG(du) +

! u2
n

β/
√
sn

esnuG(du)

)n

= e−sny2n(I21 + I22)
n

for β ∈ (0, 1). Consider first I21. For u ∈ (0, β/
√
sn), we have that esnu ∈ (1, eβ

√
sn). The

convex function esnu is bounded above by the secant:

1 +
eβ

√
sn − 1

β

√
snu = 1 +Kn

√
snu

Note that Kn = O(1/
√
sn). Thus, Thus, we have that:

I12 ≤ E(1 +Kn

√
snU) = 1 +Kn

√
sn(1 + ν2) = 1 + o(sn)

Now, for I22, we use integration by parts:

I22 = − (esnu(1−G(u))|u
2
n

β/
√
sn

+ sn

! u2
n

β/
√
sn

esnu(1−G(u))du

≤ eβ(1−G(β/
√
sn)) + sn

! u2
n

β/
√
sn

esnu+log(1−G(u))du

≤ eβ(1−G(β/
√
sn)) + sn

! u2
n

β/
√
sn

esnu+log(1−G(u))du

Since log(1 − G(u)) is a slowly varying, monotonically decreasing function and sn > 0,

snu+ log(1−G(u)) is convex on (β/
√
sn, u

2
n) for n large enough, and therefore achieves its

maximum at a boundary point. We would like to show that:

snu
2
n + log(1−G(u2

n)) < β
√
sn + log(1−G(β/

√
sn)) (22)

holds for n large enough. If we set sn = R(n)
u2
n
, since (1−G(u2

n))/(1−G(βun/
'

R(n))) → 0,
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we have that for large enough n,

I22 ≤ eβ(1−G(β/
√
sn)) + sn

"
u2
n −

β
√
sn

#
eβ

√
sn+log(1−G(β/

√
sn))

= (1−G(β/
√
sn))

,
eβ + (snu

2
n − β

√
sn)e

β
√
sn
-

= o(
'

R(n)/n)

This all also implies that I12 = 1 + o(1/n). Putting this all together, if we choose

un = wyn, for w ∈ (0, 1),

lim
n→∞

logUn

R(n)
≤ lim

n→∞

&
−y2n
u2
n

+
1'
R(n)

n'
R(n)

log(1 +O(
'

R(n)/n))

(

→ − 1

w2
< −1

The proof for Un1 is similar.

The overall upper bound is achieved by combining Lemma 3 and 4:

Lemma 5. Under the conditions of Theorem 1, we have that:

lim sup
n→∞

logP (Tn < Cα)

R(n)
= −1

Proof. Use Lemmas 3 and 4 along with Lemma 8.

A.2 Proof of Theorem 2

We will apply Lemmas 11 and 12, as appropriate, to U-statistics of the form:

Un,m =
1,
n
m

-
*

j∈An,m

f(Tj,m −
'

m/nδ)− E f(Tj,m −
'

m/nδ)

where EXi = δ/
√
n. Thus, hm(Xj1 , . . . , Xjm) = f(Tj,m −

'
m/nδ) − E f(Tj,m −

'
m/nδ).

In our case, we will have that f(Tj,m −
'

m/nδ) ⇒ f(Z), Z ∼ N (0, 1). We will need to

establish the asymptotic behavior of σ2
1,m and σ2

m,m to apply these lemmas in our cases of

interest. We abbreviate when there is no loss in clarity fm(Tj,m) := f(Tj,m −
'

m/nδ). For
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the next lemma, we define:

Tm(X−j1 , z) =

√
mX̄−j1 +

1√
m
(z − X̄−j1)5

m−2
m−1

S2
−j1

+ 1
m
(z − X̄−j1)

2

=

.
m

m− 1

√
m− 1X̄−j1

S−j1

6

778
1.

m−2
m−1

+ 1
m

3
z−X̄−j1

S−j1

42

9

::;+

1√
m

z−X̄−j1

S−j1.
m−2
m−1

+ 1
m

3
z−X̄−j1

S−j1

42

Clearly, T (X−j1 , Xj1) = Tj,m. Now, we also define:

gfm(z) := (fm ◦ T )(X−j1 ,
√
mz + X̄−j1)

hm :=
Xj1 − X̄−j1√

m

h̃m :=
X̃ − X̄−j1√

m

where X̃ is independent of and identically distributed as the other Xi.

Lemma 6. Assume that for some d ∈ (0, 1), supmE |fm(Tj,m)|1+d = D < ∞, and ‖f ′(z)‖∞ <

∞. Then, there exists a function η(z) such that for each Xj1,

sup
m>2

E
3√

m|gfm(hm)− gfm(h̃m)|1+d′ |Xj1

4
≤ η(Xj1) < ∞, a.s.

Proof. We drop the explicit dependence of g on fm for notational simplicity. Without loss of

generality let Var(Xi) = 1. Let c be such that P (S2
−j1

< c) ≤ exp{−(n − 1)Kc}. Existence

of such a c comes from Lemma 10. We also define Am,ε = [|hm| < 1/Mε, |h̃m < 1/Mε], where

Mε is defined such that if max{hm, h̃m} < 1/Mε, then

max
z∈{hm, h̃m}

<$$$$
g(z)− g(0)

z
− g′(0)

$$$$

=
≤ ε.
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Let d′ ∈ (0, d). First, we write:

|
√
m(g(hm)− g(h̃m))|1+d′ = |

√
m(g(hm)− g(h̃m))|1+d′1[S2

−j1
<c]

+ |
√
m(g(hm)− g(h̃m))|1+d′1[S2

−j1
≥c]1Am,ε

+ |
√
m(g(hm)− g(h̃m))|1+d′1[S2

−j1
≥c]1Ac

m,ε

= G1 +G2 +G3

First, we consider E(G1|Xj1). Using Hölder’s inequality and Lemma 10, we have

E(G1|Xj1) ≤
3
E(|g(hm)− g(h̃m)|1+d|Xj1)

4 1+d′
1+d

m1/2+d′/2P (S2
−j1

< c)

≤ E(|g(hm)− g(h̃m)|1+d|Xj1)
1+d′
1+d

1 + d′

2Kc

≤ E
,
|g(hm)|1+d|Xj1

- 1+d′
1+d D

1 + d′

2Kc

Next, we consider E(G2|Xj1). For this event, we rewrite:

g(hm)− g(h̃m) = g(hm)− g(0)− g′(0)hm − (g(h̃m)− g(0)− g′(0)h̃m) + g′(0)(hm − h̃m)

On Am,ε, we have that:

|g(hm)− g(0)− g′(0)hm| ≤ εhm

|g(h̃m)− g(0)− g′(0)h̃m| ≤ εh̃m

Furthermore, we have as an expression for g′(0)

g′(0) =
15

m−2
m−1

S2
−j1

f ′

6

8
.

m

m− 2

√
m− 1X̄−j15

S2
−j1

9

; ≤ 15
m−2
m−1

c
‖f ′(z)‖∞

which implies that:

|g′(0)(hm − h̃m)| ≤
15
m−2
m−1

c
‖f ′(z)‖∞|hm − h̃m|
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Combining these bounds, we have:

E(G2|Xj1) ≤ ε1+d′ E(|
√
mhm|1+δ′ |Xj1)

+ ε1+d′ E(|
√
mh̃m|1+δ′)

+

√
m− 1'

(m− 2)c
‖f ′(z)‖∞E(|

√
m(hm − h̃m)|1+d′ |Xj1)

≤ ε1+d′
3
E(|Xj1 − X̄j−1|1+d′ |Xj1) + E |X̃ − X̄j−1|1+d′

4

+

√
2√
c
‖f ′(z)‖∞E |Xj1 − X̃|1+d′

Next, we consider E(G3|Xj1). In this case, we have:

E(G3|Xj1) ≤ E(|(g(hm)− g(h̃m))|1+d|Xj1)m
1/2+d′/2P (Ac

m,ε)

We now examine P (Ac
m,ε) and apply Chebyshev’s inquality:

P (Ac
m,ε|Xj1) ≤ P (|Xj1 − X̄−j1 | >

√
m/Mε|Xj1) + P (|X − X̄−j1 | >

√
m/Mε)

≤ M2
ε

m1/2+d′/2

3
E(|X̄−j1 −Xj1 |1+d′ |Xj1) + E(|X̄−j1 −X|1+d′

4

Thus,

E(G3|Xj1) ≤ E(|g(hm)− g(h̃m)|1+d|Xj1)M
2
ε

3
E(|X̄−j1 −Xj1 |1+d′ |Xj1) + E(|X̄−j1 − X̃|1+d′

4

Combining the bounds on E(G1|Xj1), E(G2|Xj1), and E(G3|Xj1) completes the proof.

Lemma 7. Assume that for some d > 0, there is some D such that supm |fm(Tj,m)|2+d ≤
D < ∞, EXi = δ/

√
n, Tj,m −

'
m/nδ ⇒ Z ∼ N (0, 1), and ‖f ′(z)‖∞ < ∞. Then,

σ2
m,m = Var(fm(Tj,m)) → Var(f(Z)) (23)

mσ2
1,m = mVar(E(fm(Tj,m)|Xj1)) → (E f ′(Z))

2
(24)

Proof. The techniques here a quite similar to those in Lemma 6. Without loss of generality let

Var(Xi) = 1. The first part, (23) is immediate since the fm(Tj,m)
2 are uniformly integrable

by assumption. We will abbreviate dP⊗(X−j1) = dP (Xj2) × · · · dP (Xjm). To get (24),
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consider that:

mVar(E(fm(Tj,m)|Xj1))) = E[(
√
mE(fm(Tj,m)|Xj1)− E fm(Tj,m))

2]

=

! "√
m

!
g(hm)− g(h̃m)dP

⊗(X−j1)

#2

dP (Xj1) (25)

We would like to apply Vitali’s Convergence Theorem. Therefore, we will aim to bound

"√
m

!
g(hm)− g(h̃m)dP

⊗(X−j1)

#2

(26)

by an integrable function. First, consider the event Bm := [S−j1 < c]. By Lemma 10, we can

choose a c such that P (Bm) ≤ exp{−mKc}, for some K > 0, which does not depend on m.

Consider then, if we split up the integral in (26) over Bm, that by Hölder’s inequality,

"√
m

!

Bm

g(hm)− g(h̃m)dP
⊗(X−j1)

#2

≤
"√

m

!
|g(hm)− g(h̃m)|

2+d
2 dP⊗(X−j1)P (Bm)

#2

≤
!

|g(hm)− g(h̃m)|2+ddP⊗(X−j1) ·mP (Bm)
2

≤
!

|g(hm)− g(h̃m)|2+ddP⊗(X−j1) ·
1

2Kc

This is integrable since supmE fm(Tj,m)
2+d ≤ D < ∞. Thus, we can focus our attention

on Bc
m, i.e. the case in which S2

−j1
≥ c. We omit including Bc

m explicitly in our regions of

integration in what follows for notational convenience. On this event, we rewrite

g(hm)− g(h̃m) = g(hm)− g(0)− g′(0)hm − (g(h̃m)− g(0)− g′(0)h̃m) + g′(0)(hm − h̃m).

Let ε > 0. We can then chooseMε such that on the event Am,ε = [|hm| ≤ 1/Mε, |h̃m| ≤ 1/Mε],

we have that:

√
m|g(hm)− g(0)− g′(0)hm| ≤ ε

√
m|hm|

√
m|g(h̃m)− g(0)− g′(0)h̃m| ≤ ε

√
m|h̃m|
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Now, note that:

%
√
m

!

Am,ε

g(hm)− g(h̃m)dP
⊗(X−j1)

)2

(27)

≤
%
√
m

!

Am,ε

|g(hm)− g(h̃m)|dP⊗(X−j1)

)2

≤
%!

Am,ε

ε
√
m(|hm|+ |h̃m|) + |g′(0)||hm − h̃m|dP⊗(X−j1)

)2

Thus, if we can bound each of

!

Am,ε

mh2
mdP

⊗(X−j1),

!

Am,ε

mh̃2
mdP

⊗(X−j1),

!

Am,ε

mg′(0)2(hm − h̃m)
2dP⊗(X−j1)

then we have bounded (27). The first two integrals are bounded since the observations Xi

have finite variance:

E(mh2
m|Xj1) = E(Xj1 − X̄−j1)

2 = (Xj1 − δ/
√
n)2 +

1

m
, Emh̃2

m = 1 +
1

m

For the third term, note that m(hm− h̃m)
2 = (Xj1 − X̃)2. For g′(0), since we are considering

only the case when S2
−j1

> c, we have that

g′(0) =
15

m−2
m−1

S2
−j1

f ′

6

8
.

m

m− 2

√
m− 1X̄−j15

S2
−j1

9

; ≤ 15
m−2
m−1

c
‖f ′(z)‖∞

Therefore, we can apply Cauchy Schwarz and say:

!

Am,ε

g′(0)2(hm − h̃m)
2dP⊗(X−j1) ≤

m− 1

m− 2

1

c
‖f ′(z)‖2∞E((hm − h̃m)

2|Xj1)

≤ m− 1

m− 2

1

c
‖f ′(z)‖2∞(Xj1 − X̃)2

Lastly, we consider Ac
m,ε = [hm > Kε] ∪ [h̃m > Kε]. In this case we have:

%
√
m

!

Ac
m,ε

g(hm)− g(h̃m)dP
⊗(X−j1)

)2

≤ mP (Ac
m,ε)

2

!
|g(hm)− g(h̃m)|2+ddP⊗(X−j1)
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Thus, as long as P (Ac
m,ε) = O(1/

√
m) we are done. To this effect, consider first that

P (Ac
m,ε) ≤ P (|hm| > 1/Mε) + P (|h̃m > 1/Mε). Considering the first probability in this sum,

we have by Chebyshev’s inequality:

P (|hm| > 1/Mε) ≤ P (|Xj1 − δ/
√
n| >

√
m/2Mε) + P (|X̄−j1 − δ/

√
n| >

√
m/2Mε)

≤ 4M2
ε

m
+

4M2
ε

m2

Similarly, for h̃m, thus we have that:

"√
m

!
g(hm)− g(h̃m)dP

⊗(X−j1)

#2

≤ η̄(Xj1)

where E |η̄(Xj1)| < ∞. Thus, we can apply Vitali’s Convergence Theorem:

lim
m→∞

mVar(E(f(Tj,m)|Xj1)) = E( lim
m→∞

(
√
mE(f(Tj,m)|Xj1)− E f(Tj,m))

2)

Now, we apply Lemma 6, and have:

E( lim
m→∞

(
√
mE(f(Tj,m)|Xj1)− E f(Tj,m))

2) = E(E( lim
m→∞

(
√
m(f(Tj,m)− E f(Tj,m)))|Xj1))

2

Thus, note that, conditional on Xj1 , by the definition of the derivative,

√
m(f(Tj,m)− E f(Tj,m)) ⇒ f ′(Z)(Xj1 − δ/

√
n)

where Z and Xj1 are independent. Thus, mσ2
1,m → (E f ′(Z))2, as desired.

We are now ready to prove Theorem ??

Proof. We build a locally-quadratic approximation to the convex objective function. Let:

An,m(t) =
1,
n
m

-
*

j

ρ

"
Tj,m −

.
m

n
(t+ δ)

#

Un,m(t) =
1,
n
m

-
*

j

1√
m
ρ′
"
Tj,m −

.
m

n
(t+ δ)

#

Jn,m(t) =
1,
n
m

-
*

j

ρ′′
"
Tj,m −

.
m

n
(t+ δ)

#
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Note that An,m(t) is minimized at
√
nτ̂ − δ. Now, for each fixed t, we have:

An,m(t)− An,m(0) = − m√
n
Un,m(0)t+

1

2

m

n
Jn,m(0)t

2 +O
,
(m/n)3/2

-

We will use the approach in Hjort and Pollard (2011). Note that (m/n)(An,m(t)−An,m(0))

is a convex function in t which is minimized at
√
nτ̂ − δ. Now, consider that since

(n/m)(An,m(t)− An,m(0)) +
√
nUn,m(0)t−

1

2
Jn,m(0)t

2 = O
,
(m/n)1/2

-

by the Basic Corollary of Hjort and Pollard (2011), the minimizer of (n/m)(An,m(t) −
An,m(0)),

√
nτ̂ − δ, can be represented as:

√
nτ̂ − δ = argmin

t

<√
nUn,m(0)t−

1

2
Jn,m(0)t

2

=
+ oP (1)

=

√
nUn,m(0)

Jn,m(0)
+ oP (1) (28)

First, note that since ρ′′(z) is bounded, Jn,m(0) is uniformly integrable and converges in

mean square to E ρ′′(Z). For the numerator, consider the U-statistic:

Un,m(0)− EUn,m(0) =
1,
n
m

-
*

j∈An,m

1√
m

"
ρ′
"
Tj,m −

.
m

n
δ

#
− E ρ′

"
Tj,m −

.
m

n
δ

##

We consider the following ratio, applying Lemma 7 (with f = ρ′):

Var
3

1√
m
ρ′
,
Tj,m −

'
m
n
δ
-4

mVar
3
E
3

1√
m
ρ′
,
Tj,m −

'
m
n
δ
-
|Xj1

44 =
Var

,
ρ′
,
Tj,m −

'
m
n
δ
--

mVar
,
E
,
ρ′
,
Tj,m −

'
m
n
δ
-
|Xj1

-- → Var (ρ′(Z))

(E ρ′′(Z))2

(29)

Now, note that, also by Lemma 7,

m

>

Var

"
1√
m
E

"
ρ′
"
Tj,m −

.
m

n
δ

#
|Xj1

##
=

>

mVar

"
E

"
ρ′
"
Tj,m −

.
m

n
δ

#
|Xj1

##

→ E ρ′′(Z)

We then have, by Lemma 11 and Slutsky’s Theorem, that:

√
n(Un,m(0)− EUn,m(0))

Jn,m(0)
⇒ N (0, 1) (30)
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Thus, we re-center τ̂ in (28):

√
n

"
τ̂ − E ρ′(Tj,m)√

mE ρ′′(Tj,m)

#

= δ +

√
n(Un,m(0)− EUn,m(0))

Jn,m(0)
+

.
n

m
E ρ′(Tj,m)

"
1

Jn,m(0)
− 1

E ρ′′(Tj,m)

#

To show that the last term is negligible, first recall that since Var(ρ′′(Tj,m)) < ∞, we have

that

Var(Jn,m(0)) ≤
m

n
Var(ρ′′(Tj,m))

This implies that Jn,m(0) − E ρ′′(Tj,m) = OP

,'
m
n

-
, and as m/n → 0, this completes the

proof.

A.3 Proof of Theorem 3

Here we provide a simple proof of the exponential bound for Type-II error probabilities using

the new test.

Proof. Let:

Ψn,m(t) =
1,
n
m

-
*

j∈An,m

ρ′
,
Tj,m −

√
mt

-

Consider that the probability of a Type-II error is:

P (
√
nτ̂ < Cα) = P

,
0 < −Ψn,m

,
Cα/

√
n
--

= P
,
1/2 < −Ψn,m

,
Cα/

√
n
-
/2‖ρ′‖∞ + 1/2

-

≤ P

6

81/2 <
1,
n
m

-
*

j∈An,m

1
[Tj,m>

√
m/nCα]

9

;

Let pm = P (Tj,m >
'

m/nCα). By Hoeffding’s inequality for U-statistics, we have:

−m

n
logP (

√
nτ̂ < Cα) ≥ −m

n
log 2 + (1/2− pm)

2 n

m

= −m

n
log 2 +

1

4
+ p2m − pm

→ 1

4
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B Technical Appendix

This first pair of lemmas is useful in proving Theorem 10. First, we make use of the following

well known result:

Lemma 8 (Dembo and Zeitouni (2009), Lemma 1.2.15). Let an be a sequence of positive

constants such that limn→∞ an = ∞. Let N be a fixed integer, and let Πi,n, i = 1, . . . , N be

a sequence of non-negative constants. Then, we have that:

lim sup
n→∞

1

an
log

%
n*

i=1

Πi,n

)
= max

1≤i≤N
lim sup
n→∞

1

an
logΠi,n (31)

The next lemma is closely related to Lemma 8.

Lemma 9. Let An, Bn be two sequences non-negative sequences such that logBn → ±∞
and An/Bn → q ∈ [0,∞). Then, we have that:

lim
n→∞

log(An +Bn)

logBn

= 1 (32)

Proof. By rearranging, we have:

log(An +Bn)

logBn

=
log

3
1 + An

Bn

4
+ logBn

logBn

= 1 +
log

3
1 + An

Bn

4

logBn

→ 1

The previous lemma is useful for us when An and Bn are sequences of tail probabilities.

When Bn corresponds to tail probabilities from the heavier of the two tails, this lemma says

that to characterize the limiting behavior of both tail probabilities we only need consider

the contribution of the heavier tail. Notice that we use “heavier” in a weak sense: we allow

An/Bn → c ∈ (0,∞), in which case An and Bn have comparable limiting behavior.

For proving Theorem 2, we will also use several technical lemmas. This lemma is likely
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well-known but we could not find a proof and therefore provide one here:

Lemma 10. Assume that there exists a c > 0 such that 0 < c < EX2
i . Then, there exists a

ε > 0 such that:

P (S2
n < ε) ≤ exp{−nKε}

for some Kε > 0.

Proof. Since S2
n is shift-invariant, without loss of generality assume EXi = 0. Note the

simple fact that:

(Xi −Xj)
2

2
− δ := Yij,δ

:= Y +
ij,δ − Y −

ij,δ

≥ −Y −
ij,δ

Furthermore, consider that:

EY −
ij,δ = E

"
(Xi −Xj)

2

2
1[(Xi−Xj)2≤2δ]

#

≤ δP ((Xi −Xj)
2 ≤ 2δ)

Consider: if P ((Xi − Xj)
2 ≤ 2δ) = 1, then we can apply the Hoeffding bound for U-

statistics directly: for ε < σ2, we have:

P (S2
n < ε) = P (−(S2

n − σ2) > σ2 − ε) ≤ exp

<
−n(σ2 − ε)2

δ2

=

Now, consider the case that P ((Xi − Xj)
2 ≤ 2δ) < 1. In this case, we can choose

0 < ε < δ − EY −
ij,δ

δ − ε− EY −
ij,δ > 0

37



In this case, we have:

P (S2
n < ε) = P (S2

n − δ < ε− δ)

= P

%
1

n(n− 1)

n*

i=1

*

j ∕=i

Y +
ij,δ − Y −

ij,δ < ε− δ

)

≤ P

%
− 1

n(n− 1)

n*

i=1

*

j ∕=i

Y −
ij,δ < ε− δ

)

= P

%
1

n(n− 1)

n*

i=1

*

j ∕=i

Y −
ij,δ > δ − ε

)

= P

%
1

n(n− 1)

n*

i=1

*

j ∕=i

(Y −
ij,δ − EY −

ij,δ) > δ − ε− EY −
ij,δ

)

≤ exp

<
−n(δ − ε− EYij,δ)

2

δ2

=

Effectively the lemma says that deviations of the sample variance below the sample

variance disappear exponentially quickly in n, and the reason for this is those are essentially

coming from the contributions of bounded random variables.

The next two lemmas can be found int Peng et al. (2019) and the first is found in Minsker

(2022); the second is mentioned but not proved in Peng et al. (2019). We include both for

completeness.

Throughout this section, let hm(X1, . . . , Xm) be a symmetric function of m arguments,

with m → ∞ and Ehm(X1, . . . , Xm) = 0. The U-statistic with kernel hm is then:

Un,m :=
1,
n
m

-
*

j∈An,m

hm(Xj1 , . . . , Xjm)

where as before we let An,m = {j : {j1, . . . , jm} ⊂ {1, . . . , n}, jk ∕= jl, l ∕= k}, i.e. the set of
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all subsamples of size m of the set of indices {1, . . . , n}. We define the following objects:

ψc,m(X1, . . . , Xc) := E[hm(X1, . . . , Xm)|X1, . . . , Xc]

h(1)
m (X1) := ψ1,m(X1)

h(c)
m (X1, . . . , Xc) := ψc,m(X1, . . . , Xc)−

c−1*

k=1

*

j∈Ac,k

h(k)
m (Xj1 , . . . , Xjk)

δ2c,m := Var(h(c)
m (X1, . . . , Xc))

σ2
c,m := Var(ψc,m(X1, . . . , Xc))

H(c)
n,m :=

1,
n
c

-
*

j∈An,c

h(c)
m (Xj1 , . . . , Xjc)

Note that the H
(c)
m are U-statistics of degree c and mutually orthogonal. This leads to the

well-known H-decomposition:

Un,m =
m*

c=1

"
m

c

#
H(c)

n,m

The first lemma considers asymptotic normality in the case that m/n → 0.

Lemma 11. Let X1, . . . , Xn be i.i.d., and let hm : Rm → R be a symmetric function, with

Ehm(X1, . . . , Xm)
2 uniformly integrable. Then, if

m

n

σ2
m,m

mσ2
1,m

→ 0

then: √
nUn,m

mσ1,m

⇒ N (0, 1)

Proof. As in Peng et al. (2019) and Minsker (2022), we write Un,m in terms of H
(1)
n,m and a

remainder term. Via the H-decomposition, we have that:

Un,m = mH(1)
n,m +Rn,m

Furthermore, Var(Un,m) = m2 Var(H
(1)
n,m) +Var(Rn,m). We have expressions for the variance
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of H
(1)
n,m and Var(Un,m) (see, for example, Lee (2019)):

Var(Rn,m) =
m*

k=2

"
m

k

#2"
n

k

#−1

δ2k,m

Var(H(1)
n,m) =

σ2
1,m

n

Since H
(1)
n,m is a sum of i.i.d. random variables with mσ2

1,m < σ2
m,m, h

2
m uniformly integrable,

if we can show that Var(
√
nRn,m)/(m

2σ2
1,m) → 0, we are done. By the H-decomposition and

the orthogonality of the H
(c)
n,m, noting that δ21,m = σ2

1,m and δ2c,m ≤
,
m
k

-−1
σ2
m,m, we have that:

Var(Rn,m) =
m*

k=2

"
m

k

#2"
n

k

#−1

δ2k,m

≤
m*

k=2

"
m

k

#"
n

k

#−1

σ2
m,m

= σ2
m,m

%
m*

k=0

"
m

k

#"
n

k

#−1

− m

n
− 1

)

= σ2
m,m

"
n+ 1

n−m+ 1
− m

n
− 1

#

= σ2
m,m

m− 1

n−m+ 1

m

n

where we used the combinatorial identity
+m

k=0

,
m
k

-,
n
k

-
= n+1

n−m+1
. This means that if

(m/n)σ2
m,m/(mσ2

1,m) → 0, then:

Var(
√
nRn,m)

m2σ2
1,m

≤ m− 1

n−m+ 1

σ2
m,m

mσ2
1,m

→ 0

The next lemma is mentioned in Peng et al. (2019); it is not necessary for our treatment,

but we give a proof here for the curious reader:

Lemma 12. Let X1, . . . , Xn be i.i.d., and let hm : Rm → R be a symmetric function, with
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Ehm(X1, . . . , Xm)
2 uniformly integrable. Then, if

σ2
m,m

mσ2
1,m

→ 1

then: √
nUn,m

mσ1,m

⇒ N (0, 1)

Proof. Similar to the proof of Lemma 11, we need to show Var(
√
nRn)/m

2σ2
1,m → 0. We

will use the following facts from, e.g., Lee (2019):

σ2
k,m ≤ k

m
σ2
m,m, ∀k ≤ m (33)

m*

k=1

"
n

m

#−1"
m

k

#"
n−m

m− k

#
k =

m2

n
(34)

As an alternative expression for Var(Rn,m), we can exploit the orthogonality of Rn,m and

H
(1)
n,m:

Var(Rn,m) = Var(Un,m)−m2 Var(H(1)
n,m)

=

"
n

m

#−1 m*

k=1

"
m

k

#"
n−m

m− k

#
σ2
k,m − m2

n
σ2
1,m

≤
σ2
m,m

m

"
n

m

#−1 m*

k=1

"
m

k

#"
n−m

m− k

#
k − m2

n
σ2
1,m

=
m

n
σ2
m,m − m2

n
σ2
1,m

=
m2

n
σ2
1,m

"
σ2
m,m

mσ2
1,m

− 1

#

Thus, we have that
Var(

√
nRn,m)

m2σ2
1,m

≤
σ2
m,m

mσ2
1,m

− 1

and the result follows.
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C Size simulations

In this section we report some results on the size of the test, and how it compares with the

classic t-test. For these simulations, we ran a simple one-sided t-test: H0 : µ = 1 against a

1-sided alternative. We used three different distributions for the data: gamma, lognormal,

and inverse-gamma. All we normalized so that the mean was 1 and the variance was 1 as

well. For the new test, we set epsilon a bit on the higher end: {0.500, 0.667, 0.833, 0.909},
where m = anε, and again a is set so that m starts at 30. We also compared results when

we used the monotone cubic transform of Hall (1992). For the new test, the adjustment is

performed on the subsamples, and then the aggregation procedure is performed.

The right panel shows the un-adjusted test-statistics. Notice that none of the test-

statistics achieve good size control, and when m is particularly slow-growing, the distortion

is quite bad. On the other hand, for moderate choices of ε, when the adjustment is performed,

the new test controls size just as well as the t-statistic. These simulations demonstrate that

unlike classic robust procedures, which may not be consistent for the mean, the new proposed

procedure is.
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