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Abstract

When constructing Wald tests, consistency is the key property required for the

variance estimator. This property ensures asymptotic validity of Wald tests and confi-

dence intervals. Classical efficiency comparisons of hypothesis tests indicate all consis-

tent variance estimators lead to equivalent Wald tests. This paper develops a simple

relative efficiency measure which leads to several new conclusions. These include quan-

tifying the power loss associated with using cluster-robust variance estimators when

using overly coarse clusters, recommending particular kernels for estimating the asymp-

totic variance in quantile regression, and comparing the power of Anderson-Rubin tests

to the standard Wald test. As a byproduct, the asymptotic distributions of several test

statistics are derived under fixed alternatives. Simulation evidence indicates the new

asymptotic efficiency measure provides good finite-sample predictions. In an applica-

tion using data from the American Community Survey, it is demonstrated how to use

the new approach for conducting power analysis when looking at the effect of minimum

wage increases on employment.

∗I am grateful for the encouragement, advice, and, especially, patience I have received from Jack Porter,

Bruce Hansen, Mikkel Sølvsten, and Harold Chiang. I also thank Xiaoxia Shi, Eric Auerbach, Kei Hirano, Bo

Honore, Jim Powell, Yuya Sasaki, Ken West, Annie Lee, John Stromme, Anna Trubnikova, Anson Zhou, and

past seminar participants at the University of Wisconsin-Madison for their helpful insights and comments

which have shaped the paper in its present form. I gratefully acknowledge the financial support I have

received from the Alice S. Gengler Dissertation Fellowship. All remaining errors are my own.
†email: sengle2@wisc.edu website: samuelpengle.com

1

https://samuelpengle.github.io/websiteDocs/sengle_jmp.pdf
mailto:sengle2@wisc.edu
https://samuelpengle.com


1 Introduction

Much of empirical work in economics follows a three step recipe: estimate the parameter of

interest, estimate the asymptotic variance, then construct a test statistic or confidence inter-

val to answer the research question. The first step is generally treated differently than the

other two; while discussions on parameter estimation often focus on efficiency, the dialogue

around variance estimation and testing typically focuses on robustness to misspecification.

In this paper we demonstrate that this focus on robustness ignores meaningful implications

for efficiency in the variance estimation step. The resulting asymptotic theory provides a

theoretical foundation for several common “folk” theorems in applied work.

The choice of variance estimator is an every present decision in applied work. There is

a menu of available robust consistent variance estimators in standard statistical packages.

Researchers with grouped data must determine whether to compute cluster-robust standard

errors, and what level to cluster at. In the case of quantile regression, researchers choose a

kernel density estimator to use. In likelihood settings under correct specification, the Fisher

information matrix can be estimated using the outer product of the score or the second

derivative of the log-likelihood. Robust variance estimators in time series involve choosing

a kernel and truncation point. We will not consider all these examples here, however we

provide a framework that is suited to studying the effect of variance estimation in many of

these contexts.

This paper makes three key contributions to the econometric literature on hypothesis

testing. First, we develop a new approach for conducting power analysis in a wide class of

econometric models. This approach leads to a new way to compare the relative efficiency of

tests that is sensitive to the choice of variance estimator. Second, we apply this approach

to several applications, leading to new insights into testing in these environments: cluster-

robust inference, quantile regression, and linear instrumental variables (IV) models. Last, as

an intermediate step of possibly independent interest, we derive the asymptotic distribution

of Wald test statistics under fixed-alternatives in these different econometric settings.

Considering the behavior of test statistics under fixed alternatives is a key part of how we

distinguish between different variance estimators. The theory developed in this paper takes

a different approach compared with the traditional local-asymptotic theory of Engle (1984),

Newey and McFadden (1994), and van der Vaart (1998). That work finds that a broad class

of tests statistics have the same limiting distribution under local-alternatives. Our analysis

is non-local, which leads to these equivalencies no longer holding in general. This allows for

finer distinctions between testing procedures. In the case of Wald tests, local equivalence

holds whenever the same parameter estimator is used in two different tests, even if different
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consistent variance estimators are used. This equivalence no longer holds in our asymptotic

theory when different estimators of the asymptotic variance are used. To compare these test

statistics, we propose using an asymptotic relative efficiency (ARE) measure which compares

tests under a regime where size converges to 0 and power converges to a constant in (1/2, 1).

Our approach contrasts with the local ARE of Pitman (1949), the most commonly used

approach in econometrics. The ARE measure we propose can be compared to the measure

proposed in Bahadur (1967). A benefit of our approach is that no large-deviation results

are necessary for comparing tests. In a similar fashion, our approach is also more broadly

applicable than the measure proposed in Hodges and Lehmann (1956), where size converges

to a constant and power converges to 1, an approach which also requires large-deviation

theory.

There has been other recent work in econometrics on non-local ARE measures. Kim and

Perron (2009) propose using an approximate version of the Bahadur (1967) ARE to test

for structural breaks in time series. Canay and Otsu (2012) used Hodges-Lehmann ARE to

assess the efficiency of generalized method of moments (GMM) and generalized empirical

likelihood tests of moments conditions. A benefit of our approach is broad applicability to

testing problems most frequently encountered in empirical work, while maintaining an exact

asymptotic comparison.

We demonstrate the broad applicability of our approach by considering several important

applications of the theory. We derive an asymptotic power approximation for general use in

smooth GMM problems. From there, we discuss our ARE measure and apply it to several

settings. The first specific application we provide is to cluster-robust inference. The general

framework we adopt is that in Hansen and Lee (2019). Popularized in Bertrand et al. (2004),

some recent work in econometrics has focused on the choice of cluster level. In Cameron and

Miller (2015) it is argued that the coarsest cluster level should always be used. Abadie et al.

(2017) presents a design-based approach to choosing the appropriate cluster level, along with

some finite-sample results. MacKinnon et al. (2020b) provide a sequential testing procedure

to detect the correct clustering level. We show that there is an unambiguous loss of efficiency

when independent observations are included in the same cluster. Our results imply a method

for researchers to conduct power analysis to see if the efficiency loss in their case is severe,

or if there is little to be lost from the added robustness.

Our second application is to non-differentiable moment conditions. We focus on the

linear conditional quantile regression model of Koenker and Bassett (1978). In this case,

classic approaches to variance estimation involve estimators of the conditional density of the

error term. We focus on the kernel density estimator of Powell (1991). In Kato (2012), the

asymptotic distribution is derived for the kernel density estimator for the particular choice
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of a uniform kernel. The default choices in the quantreg package in R and the qreg function

in Stata are the Gaussian and Epanechnikov kernel, respectively. We provide a first-order

theoretical justification for this, by showing these estimators are more efficient relative to

the uniform kernel.

The third application is to linear instrumental variables (IV) models. We show that

the Anderson-Rubin test (Anderson and Rubin (1949), Andrews et al. (2019)) trades off

asymptotic power with the classic Wald test based on the two-stage least squares (2SLS)

estimator in certain parts of the parameter space. These tests are considered equivalent under

local-power comparisons, and since the Anderson-Rubin test is robust to weak instruments,

generally econometricians have recommended its use.

Our distributional theory extends results in Bentkus et al. (2007), Omey and van Gulck

(2009), and Shao and Zhang (2009), where one-sample t-statistics and similar types of statis-

tics are considered. We extend the basic theory to smooth GMM problems under i.i.d. sam-

pling, a non-smooth problem in quantile regression, and dependent data for cluster-robust

inference. In Bentkus et al. (2007) these asymptotic distributions are used to motivate

asymptotic power functions. We use this type of calculation to motivate our own relative

efficiency comparison.

Our empirical application focuses on the case of cluster-robust inference. We use the

same data set used in MacKinnon et al. (2020a). The data include 15 years of data from

the American Community Survey (ACS) and corresponding minimum wage data, curated

by Neumark (2019). Their application focused on testing for the correct level to cluster at,

effectively providing a way to determine how to ensure that size of Wald tests is asymp-

totically correct. We show researchers the other side of this comparison by quantifying the

power loss associated with clustering at a coarser level than necessary. Our asymptotic ap-

proximation implies that clustering at the state level, the chosen level in MacKinnon et al.

(2020a), should not lead to significant power loss relative to the finer state-year level.

The rest of the paper proceeds as follows: we start by introducing the principles of our

analysis in the context of a simple testing problem: hypothesis testing for means. In Section

3, we provide a treatment of the distribution of Wald statistics in GMM settings, under

fixed alternatives, and provide a method for conducting power analysis. In Section 4 we

discuss a new relative efficiency measure that comes out of these power calculations. In

Section 5 we apply our ARE measure to cluster robust inference, quantile regression, and

linear IV models and show how our analysis can inform practice in these cases. Simulations

are provided in Section 6 to show the efficacy of the methods here in making finite-sample

predictions. In Section 7, we apply our procedure to perform power analysis in the case of

clustered sampling settings. A summary of our results is discussed in Section 8
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2 A Simple Example: the Sample Mean

We begin by considering a simple testing problem: a two sided hypothesis test for the

sample mean. To illustrate the basic approach, we compare the classic Wald test statistic

with a cluster-robust version. Under sequences of local-alternatives, these test statistics

have the same asymptotic properties, and therefore the same asymptotic power. When we

compare the asymptotic distributions under fixed alternatives, we find that the asymptotic

distributions differ for the two test statistics. This leads to a natural relative efficiency

comparison, in which we find that when the observations are independent (i.e. both test

statistics have correct asymptotic size) there is an asymptotic power loss associated with

using the cluster-robust test statistic.

2.1 Cluster-robust inference

Consider a sample {Xgi}, where i denotes observation i in group g. There are G groups, each

containing M observations, for a total of GM = n observations.1 A concerned researcher

suggests that we should use cluster-robust methods since the data were grouped when col-

lected, however we know that the observations are independent and identically distributed.

For all g, i, we have that EXgi = µ and Var(Xgi) = σ2. Let γ and κ denote the skewness and

kurtosis respectively. We would like to test H0 : µ = µ0 against H1 : µ ∕= µ0. We construct

Wald tests based on the sample mean:

X̄n :=
1

n

G!

g=1

M!

i=1

Xgi

We compare the test statistic we prefer, the classic Wald test-statistic, to a cluster robust

version suggested by another researcher. For simplicity, we do not include any degrees-

of-freedom correction, which will be unimportant asymptotically. The classic Wald test

statistic, assuming homskedasticity, is given by:

Wh =
(X̄n − µ0)

2

σ̂2
h

, σ̂2
h =

1

n

G!

g=1

M!

i=1

(Xgi − X̄n)
2 (1)

When discussing the asymptotic approach taken here, degrees of freedom corrections

become irrelevant asymptotically, so for notational simplicity we adopt the convention of

dividing by n rather than n − 1 when computing the variance estimator. Similarly, in the

1We can also accommodate unbalanced designs with growing cluster sizes; this type of result is also
covered in Section 5.1.
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case of a cluster-robust variance estimator, often there is a degrees of freedom correction

based on the number of clusters, as proposed in Hansen (2007). Since we use the large-G

asymptotics of Hansen and Lee (2019), these degrees of freedom corrections disappear in the

limit. Thus, the cluster-robust Wald statistic is:

Wc =
(X̄n − µ0)

2

σ̂2
c

, σ̂2
c =

1

n

G!

g=1

"
M!

i=1

(Xgi − X̄n)

#2

(2)

Traditional analysis proceeds as follows. Under the null hypothesis, and without any

cluster dependence, we have that:

nWh ⇒ χ2
1

nWc ⇒ χ2
1

This fact is a basic application of Slutsky’s theorem: the numerator of each test statistic,

divided by σ2, is asymptotically χ2
1, and each denominator converges to σ2 in probability.

Implicitly, this effectively treats each variance estimator as equal to its probability limit.

The same logic holds in the case of a sequence of local alternatives, where we consider

µn = µ0 + δ/
√
n. In this case, Slutsky’s theorem applies again: the only change is that

the numerator of the test statistic is no longer correctly centered, therefore the limiting

distribution is χ2
1(δ

2/σ2).

Now, let µ = ∆ + µ0. For discussing our results, it is useful to define the non-centrality

parameter:

ξ :=
∆

σ

For a ∈ {h, c}, the expansion of the test statistic under a fixed alternative is:

Wa =
(X̄n − µ)2

σ̂2
a

+
2∆(X̄n − µ)

σ̂2
a

+
∆2

σ̂2
a

(3)

The first two terms converge in probability to 0, and the last term converges to ξ2 in each

case. Thus, one way of viewing the test statistic under a fixed alternative is as a scaled

estimator of the non-centrality parameter ξ2. In (3), the first term on the righthand side

is asymptotically negligible relative to the other two terms. Under the assumption of finite

kurtosis, we can obtain a normal asymptotic distribution:

√
n
$
Wa − ξ2

%
⇒ N

$
0, ξ2Σa

%
(4)
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where

Σh = (κ− 1)ξ2 − 4γξ + 4 (5)

Σc = Σh + 2(M − 1)ξ2 (6)

This calculation makes the simplifying assumption that the clusters all have the same size

and that size is fixed atM for all n. We will later relax this assumption, and doing so does not

change the main conclusions. Even though our observations are i.i.d., the variance estimator

in (2) involves the sum over G i.i.d. cluster-sums, whereas in the variance estimator in (1) we

sum over all n observations. There are two effects here. One is that the proper normalization

for (2) is
√
G, rather than

√
n, since we are summing over G squared cluster-sums. This

is because for the purposes of variance estimation, we are only using G data points. We

are effectively using a fixed-fraction of our data: G/n = 1/M . The other effect is that if

we expand the variance estimators in (2) and (1), the cluster-robust variance estimator will

have all the same terms as the homoskedastic variance estimator, plus some additional terms.

When considering the probability limit, these extra terms have mean zero and disappear.

They show up in the asymptotic variance, inflating the tails of the test statistic.

We now connect the asymptotic distribution of the test statistics to power. Let Cα be

the upper α quantile of a χ2
1 random variable. Local alternatives give a (local) asymptotic

approximation to power:

P (nWa > Cα) → 1− Fχ2
1(δ

2/σ2)(Cα), a ∈ {h, c}, δ =
√
n(µn − µ0) (7)

where δ is the local parameter previously defined. This non-central chi-square distribution

is the same regardless of which variance estimator we use. Thus, the asymptotic power

comparisons under local alternatives do not distinguish between Wald tests where different

consistent variance estimators are used; the first order asymptotics are the same for both

test statistics.

One implication of (4), (5), and (6) is that under fixed alternatives the test statistics have

different asymptotic distributions. It is now feasible that we can compare the test statistics

with respect to their asymptotic power properties. Note that Σh < Σc as long as M > 1.

We consider the power of the test, rearranging and normalizing the test statistic based on
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the asymptotic distribution in (4):

P (nWa > Cα) = P

&
Wa − ξ2 >

Cα

n
− ξ2

'

= P

"
(ξ2Σa)

−1/2
√
n
$
Wa − ξ2

%
>

Cα(
nξ2Σa

−

)
nξ2

Σa

#
(8)

We cannot generally compute probabilities such as those in (8). The term on the righthand

side is diverging to −∞ and therefore we generally cannot assume the central limit theorem

provides a good approximation here.

Part of the appeal of local power analysis is that asymptotically power is in (0, 1). Under

fixed alternatives, we construct a sequence of critical values Ca
n such that P (nWa > nCa

n) →
1− β ∈ (0, 1), and for relative efficiency we focus on the case that 1− β ∈ (1/2, 1). In this

way, the sequence of critical values tells us about the speed at which the power converges

to 1. We showed that Wa
P→ ξ2. Thus, we choose a sequence Ca

n which is local to the

non-centrality parameter ξ2, and approaches this limit from below.

0 ← Cα

n
Ca

n → ξ2

Figure 1: The distribution of Wa will concentrate around the non-centrality parameter ξ2,
while the critical value for the test Cα/n converges to 0. The chosen sequence Ca

n will converge
to the non-centrality parameter at the correct rate so that the power of this sequence of tests
is non-degenerate asymptotically.

In Figure 1, we lay out the relationship between the non-centrality parameter, Ca
n, and

Cα/n. We want to gain insight into asymptotic behavior of the exact power in (8), and

therefore choose Ca
n converging to ξ2 from below for our relative efficiency comparison. Note

that any sequence local to ξ2 will lead to non-degenerate power. We choose the sequence of
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critical values:

Ca
n := n

"
ξ2 − tΣ

1/2
a√
n

#
(9)

The following is valid for t ∈ R, however the case that t > 0 is the relevant choice for

large n, as this will imply power is above 1/2 asymptotically:

P (nWa > Ca
n) = P

$
Σ−1/2

a

√
n
$
Wa − ξ2

%
> −t

%
→ Φ(t)

This asymptotic power approximation was proposed in Bentkus et al. (2007) in the case

of the 1-sample t-test. We use it to motivate an asymptotic relative efficiency measure. For

our two test statistics, Wh and Wc, which one requires a larger sequence of critical values

to prevent power from converging to 1? Let us consider what happens when we use the

sequence corresponding to Wh as critical values for tests using Wc. The asymptotic power

of the tests becomes:

P (nWc > Ch
n) = P

*
Σ

−1/2
h

√
n
$
Wc − ξ2

%
> −t

+
→ Φ

"
t

&
Σh

Σc

'1/2
#

(10)

The last term in (10) is smaller than Φ(t) for all t > 0, since Σh < Σc. Thus, for the same

sequence of critical values, the test using Wh outperforms the test using Wc.

It is instructive to compare this procedure with the local asymptotic power comparison we

conducted previously. When comparing local asymptotic power, the effective non-centrality

parameter nξ2 is localized around 0. This implies that asymptotically, the test statistic is

on the same scale as conventional critical values. In our comparison, the critical values are

localized to the effective non-centrality parameter, and analysis is conducted local to that

sequence. Our relative efficiency measure can also be compared to the measure developed

in Bahadur (1967). In that paper, a sequence of critical values is derived from the behavior

of p-values under a fixed alternative. The rate at which that sequence disappears is then

compared across test statistics in terms of how quickly the type-I error rate disappears.

In this paper we specify the sequence of critical values and compare the asymptotic power

of tests under the same sequence of critical values. Both procedures can be interpreted

as situations where the type-I error converges to 0 and the power is asymptotically non-

degenerate. A benefit of our analysis is that we only require a central limit theorem, and do

not require large deviation theorems. We will revisit this point in our applications, where

often we cannot compute large-deviation type probabilities.
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3 Fixed-Alternative Asymptotics

The previous section motivates the following derivation of the asymptotic distribution of test

statistics under fixed alternatives. In this section we introduce the general setup for deriving

the asymptotic distribution of test statistics under fixed alternatives in the particular case

of GMM estimators. We first show the test statistics is asymptotically normal under a fixed

alternative, and then discuss how to use the approximation for power calculations.

3.1 GMM-Based Wald Statistics under Fixed-Alternatives

Consider the case of efficient GMM estimators. We have a set of q moment conditions

E g(Xi, β) = 0 (11)

where β ∈ Rp, Xi ∈ X , g : X × Rp → Rq, q ≥ p. The parameter of interest is the linear

functional θ = ℓ′β for a fixed ℓ ∈ Rp. The vector β is estimated via efficient GMM from

an i.i.d. sample of size n. Under standard regularity condition, such as those in Newey and

McFadden (1994), we have that:

√
n(β̂ − β) ⇒ N (0, V ) (12)

where V = (Q′Ω−1Q)−1, Ω = E g(Xi, β)g(Xi, β)
′, and Q = E ∂βg(Xi, β). We are interested

in testing the two-sided hypothesis:

H0 : θ = θ0, H1 : θ ∕= θ0 (13)

To form a Wald test statistic, we need to estimate Q and Ω. Consistent plug-in estimators

of Ω and Q are typically used to construct an estimate of V :

Ω̂ =
1

n

n!

i=1

g(Xi, β̂)g(Xi, β̂)
′, Q̂ =

1

n

n!

i=1

∂

∂β′ g(Xi, β̂), V̂ = (Q̂′Ω̂−1Q̂)−1 (14)

It is then straightforward to form Wald test statistics to test (13):

nWn =
n(ℓ′β̂ − θ0)

2

ℓ′V̂ ℓ
(15)

Under the null hypothesis, under common regularity conditions we have that nWn ⇒ χ2
1.
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Similarly, under a sequence of local alternatives θn = θ0 + δ/
√
n, we have that:

nWn ⇒ χ2
1(δ

2/ℓ′V ℓ) (16)

a non-central chi-square distribution; under the null and local alternatives the test statistics

converge to their limit at the rate n.

To derive the distribution of Wn under a fixed-alternative θ = θ0 + ∆, we will need to

make stronger assumptions than those necessary for (12).

Assumption 3.1. There is a unique β∗ such that β = β∗ satisfies (11), 1
n

,n
i=1 g(Xi, β̂) =

oP (1/
√
n), and (12) holds for β = β∗.

Rather than restating standard regularity conditions, this assumption implies we are

in an environment in which valid asymptotic inference can be conducted. For lower-level

conditions, see Newey and McFadden (1994) and van der Vaart (1998).

Assumption 3.2. There exists a neighborhood N containing β∗ such that g is twice con-

tinuously differentiable on N , and for all l, k,

E

-
sup
β∈N

....
∂2

∂βl∂βk

g(Xi, β)

....

/
< ∞

To establish stochastic equicontinuity of the GMM objective function, typically a bounded

first derivative is required. Here, we require a locally bounded second derivative, since

we require the asymptotic normality of linear functionals of Q̂. When establishing a valid

(stochastic) Taylor expansion of the test statistic, we need sufficient smoothness in ∂βg(Xi, β)

near β∗. The requirement of differentiability eliminates quantile regression, but we will later

relax this assumption for that case.

Assumption 3.3. 0 < E ‖g(Xi, β)‖4 < ∞, and for all β ∈ N , 0 < E ‖ ∂
∂β
g(Xi, β)‖2 < ∞.

This assumption is almost minimal for asymptotic normality of the variance estimator.

We later discuss how to characterize the limiting behavior of test statistics when g has fewer

than four moments, and when ∂βg has fewer than two moments.
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To obtain the asymptotic distribution, it is helpful to consider a generalization of (3):

Wn −
∆2

ℓ′V ℓ
=

(θ̂ − θ)2

ℓ′V̂ ℓ
(17)

+
2∆(θ̂ − θ)

ℓ′V̂ ℓ
(18)

+
∆2

ℓ′V̂ ℓ
− ∆2

ℓ′V ℓ
(19)

As before, we will define the probability limit of Wn as ξ = ∆/
√
ℓ′V ℓ. The righthand side

of (17) is OP (1/n), as rescaled by n this term will be asymptotically χ2
1. Under asymptotic

normality of θ̂, standard regularity conditions will imply that (18) will be asymptotically

normal. We strengthen the original assumptions to ensure asymptotic normality of (19).

Expanding this term, we get two components depending on Ω̂ and Q̂:

∆2

ℓ′V̂ ℓ
− ξ2 = − ξ2

ℓ′V ℓ
tr
0
Ω−1QV ℓℓ′V Q′Ω−1(Ω̂− Ω)

1

+
2ξ2

ℓ′V ℓ
tr
0
V ℓℓ′V Q′Ω−1(Q̂−Q)

1
+ oP (1/

√
n) (20)

It turns out that under our assumptions each estimator θ̂, Ω̂, and Q̂ is asymptotically linear.

For θ̂, this is a standard result. For the variance estimator components, examining (14)

shows that the variance estimators are also sums. From Assumption 3.2, we can use a

Taylor expansion and replace the estimated parameter β̂ by β in each estimator in (14) and

include an additional term that depends on β̂−β when deriving the asymptotic distribution.

We can show that the test statistic is also asymptotically linear under a fixed alternative,

and has a normal limit.

Theorem 1. Under Assumptions 3.1-3.3, there exists a vector c and a positive definite

matrix Σ such that:
√
n
$
Wn − ξ2

%
⇒ N (0, c′Σc) (21)

The form of c and Σ are given in the appendix, as their expressions are rather long. We

have suppressed the dependence here, but both terms depend on the alternative ∆. This

emphasizes that under fixed-alternatives, the mean and variance of the test statistic will be

related. Intuitively, c′Σc corresponds to the variance of particular linear functionals of
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a′1g(Xi, β), a
′
2g(Xi, β)g(Xi, β)

′a2, a
′
3

∂

∂β
g(Xi, β)a4 (22)

for constant vectors a1, a2, a3 ∈ Rq, a4 ∈ Rp. When considering the asymptotic distribution

of the test statistic under the null hypothesis, or under fixed alternatives, asymptotically all

randomness in the test statistic is coming from a normalized sum n−1/2
,

i g(Xi, β). Now, we

end up with quadratic terms (a′2g(Xi, β))
2 and bilinear terms a′3∂βg(Xi, β)a4 impacting the

asymptotic distribution. It is helpful to understand the effect of these terms by considering

when Theorem 1 does not hold. We highlight two examples that we will discuss in more

detail. The first is where (a′2g(Xi, β))
2 does not have a second moment. In this setting,

asymptotic normality will no longer hold, but in particular settings we will still be able

to characterize the asymptotic distribution. The second extension is when g(Xi, β) is non-

differentiable. Following classical asymptotic theory, in some cases E g(Xi, β) might still be

sufficiently smooth in β. Differentiating after smoothing leads to an asymptotically valid

expansion, where a non-differentiable function is approximated by a smooth function. This

setting is exactly the setting previously considered for the sample median, and there a result

of this smoothing was the introduction of a new infinite-dimensional nuisance parameter,

the density.

3.2 Power Calculations

We can use the central limit-theorem result in Theorem 1 to approximate power, just as we

did in Section 2. Using (21) as a guide, consider the rejection probability of the standard

Wald test:

P (nWn > Cα) = P

&√
n(Wn − ξ2)√

c′Σc
>

Cα√
nc′Σc

−
√
nξ2√
c′Σc

'
(23)

The event in the righthand side of (23) involves a term obeying a central limit theorem

as in (21), and a term that diverges to −∞. For a sequence of critical values of the form:

Cn := n

"
ξ2 − t

√
c′Σc√
n

#

we have that P (nWn > Cn) → Φ(t), for any t. Thus, our proposal is to use:

t̂n :=

√
nξ2√
c′Σc

− Cα√
nc′Σc

(24)

with an asymptotic power function given as Φ(t̂n). There are two important implications that

13



come out of these calculations. First, this power calculation under fixed alternatives relies

only on a central limit theorem. No large or moderate deviation-type results are required.

Second, there is additional information present here that is not present when computing

power using local asymptotics. There, asymptotic power depends on the local parameter

δ2/ℓ′V ℓ and the critical value Cα. Here, we supplement the non-centrality parameter ξ2 and

the critical value Cα with an additional variance term c′Σc, which will be relevant when ξ2

is sufficiently far from 0.

4 A New Relative Efficiency Comparison

In this section we outline how to use the previously discussed power calculations to motivate

a new relative efficiency measure. Suppose we have a pair of test statistics Wn, Rn for testing

a point null H0 : θ = θ0 about a scalar parameter θ ∈ R, such that under the null hypothesis:

nWn ⇒ χ2
1

nRn ⇒ χ2
1

Further, suppose that there exist sequences of constants an, bn > 0, an, bn → ∞, an, bn = o(n)

and constants ξ, ν ∈ R, σ,ω > 0 such that under a fixed alternative θ ∕= θ0:

an(Wn − ξ2) ⇒ N (0, σ2)

bn(Rn − ν2) ⇒ N (0,ω2)

Note that this also implies each test is consistent, so that power converges to 1. How should

we go about comparing those two test statistics? From the calculations in the previous

section, we can approximate the asymptotic power, however the sequences of critical values

used will be different for the two test statistics, and in particular the sequences are:

Cn = n

&
ξ2 − tσ

an

'

Dn = n

&
ν2 − tω

bn

'

Specifying a particular alternative pins down the sequence of critical values in each case.

Thus, if we specify an alternative θ, and then choose the same sequence of critical values for

both test statistics, say Cn, under the null hypothesis the size of each sequence of tests will

14



converge to 0. Under the particular alternative θ we choose, we have that:

P (nWn > Cn) → Φ(t)

How should we compare this with the asymptotic power of Rn? Using the same sequence of

critical values for this test statistics, we have:

P (nRn > Cn) = P (nRn > Dn + (Cn −Dn))

→ Φ

&
t− bn

ω

&
ξ2 − ν2 − t

&
σ

an
− ω

bn

'''
(25)

Notice that the limit (25) is valid even if the argument diverges, since we are not making

any statement of the relative error in the approximation, so shared degeneracies at 0, 1/2 or

1 still imply the shared limit. Clearly, the dominant term is bn(ξ
2 − ν2). Thus, if ξ2 > ν2,

then (25) converges to 0. Thus, the sequence of critical values leading to non-degenerate

power for Wn leads to no power asymptotically for Rn, and thus we prefer Wn to Rn. Now,

suppose that ξ2 = ν2. Then we are left with:

Φ

&
t
σ

ω

bn
an

'

Recall from Figure 1 that the choice of t > 0 seems to be more relevant for comparing the

performance of tests under fixed alternatives. Thus, if bn/an → 0, then the asymptotic power

converges to 1/2 for Rn, whereas for Wn the asymptotic power is in (1/2, 1). Thus, when the

convergence rate of Rn is slower than the rate for Wn, we prefer Wn. Lastly, if bn/an → 1,

then we prefer Wn when σ < ω.

Based on these arguments, we propose using a lexicographic preference ordering over

test statistics. First, compare non-centrality parameters. The test statistic with the larger

non-centrality parameter is preferred. If the non-centrality parameters are the same, as they

are in different Wald tests using the same point estimator, compare the rates of convergence.

If the rates of convergence are the same, then look at the asymptotic distribution of the test

statistics under fixed alternatives, and choose the test statistic with the smaller asymptotic

variance. In Section 5, we cover examples which illustrate how to apply this procedure in

each of these cases.
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5 Applications and Extensions

Evaluating the cost of cluster-robust inference involves comparing the variances (and possibly

rates) of the test statistics involved. Choosing a kernel variance estimator for standard errors

in a quantile regression environment requires a choice of the convergence rate (in a particular

range) as well as a choice of the kernel, which affects the asymptotic variance of the test

statistic. Lastly, in a linear IV environment, we compare the Anderson-Rubin test to the

Wald test using the 2SLS estimator under strong identification. These two tests lead to

different non-centrality parameters, and we can specify in which parts of the parameter

space each test is expected to have higher power.

5.1 Extension to Cluster-Dependent Data

In this section we extend the results of Section 3.1 to cluster-dependent data. We focus

on two empirically relevant cases: linear regression models and linear instrumental variable

models. We present an extension of Theorem 1, and look at the asymptotic behavior of the

test statistic when independent observations are included in the same cluster for the purpose

of variance estimation. When a finer cluster level is appropriate, such as classroom, using a

coarser cluster, such as school, will lead to asymptotic efficiency loss.

We consider here the just-identified case for 2SLS, where we treat OLS as a special

case. For our purposes we will focus on linear functionals θ = ℓ′β. The extension to

over-identified settings and nonlinear restrictions is conceptually straightforward, if more

notationally cumbersome. The model is:

ydgi = x′
dgiβ + εdgi, E[εg(d)|Zg(d)] = 0

where we denote observation i in coarse clusters d and sub-cluster g. Implicitly, the cluster

level g is nested in only one coarse cluster d. We will sometimes make this explicit nota-

tionally, and use g(d) to denote that cluster g is nested in d.Zg(d) and Xg(d) will generally

be the ng(d) × p matrices with row i equal to z′dgi or x′
dgi respectively, and ydgi and εg(d)

will be ng(d) vectors. The case of OLS is nested with Zg(d) = Xg(d). Consider two levels

of clustering: for example, classrooms versus schools. We will denote the number of stu-

dents in classroom g by ng(d), and the number of students in school d by n•d =
,Gd

g=1 ng(d),

where Gd denotes the number of classrooms in school d. The total number of observations

is n =
,D

d=1

,Gd

g=1 ng(d) =
,D

d=1 n•d. The truth is that observations are independent across
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classrooms, but this is unknown to the researcher. We define:

Ωn :=
1

n

D!

d=1

Gd!

g=1

E(Z ′
g(d)εg(d)ε

′
g(d)Zg(d))

Qn :=
1

n

D!

d=1

Gd!

g=1

E(Z ′
g(d)Xg(d))

Vn := Q−1
n Ωn(Q

′
n)

−1

We will need to make some assumptions to obtain not only validity of the Wald test

statistic, but asymptotic normality under fixed alternatives.

Assumption 5.1. For some 2 ≤ rA < ∞, A ∈ {G, D}, there exist CG, CD such that:

*,D
d=1

,Gd

g=1 n
2rG
g(d)

+2/rG

n
≤ CG < ∞,

*,D
d=1 n

2rD
•d

+2/rD

n
≤ CD < ∞

lim
n→∞

max
g,d

n4
g(d)

n
= lim

n→∞
max
d≤D

n4
•d
n

= 0

This first assumption places restrictions on how quickly the clusters can grow with n and

how heterogenous the clusters can be. Equal-sized clusters are allowed, as well as clusters

that grow as a power of n, such as ng(d) = nω, for ω ∈ (0, 1). The same holds true for n•d as

well. For a more complete discussion, see Hansen and Lee (2019).

For the next assumption, we introduce some notation:

an := (Q−1
n )′ℓ (26)

bn := Vnℓ (27)

We then define:
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Yg(d) :=

2

34
Zg′(d)εg(d)

a′n(Z
′
g(d)εg(d)ε

′
g(d)Zg(d) − EZ ′

g(d)εg(d)ε
′
g(d)Zg(d))an

a′n(Z
′
g(d)Xg(d) − EZ ′

g(d)Xg(d))bn

5

67 (28)

Y•d :=

2

3334

,Gd

g=1 Z
′
g(d)εg(d)

a′n

&0,Gd

g=1 Z
′
g(d)εg(d)

1 0,Gd

g=1 Z
′
g(d)εg(d)

1′
−

,Gd

g=1EZ ′
g(d)εg(d)ε

′
g(d)Zg(d)

'
an

a′n

*,Gd

g=1 Z
′
g(d)Xg(d) −

,Gd

g=1EZ ′
g(d)Xg(d)

+
bn

5

6667
(29)

The main idea behind the results here is deriving central limit theorems based on sums of

these mean-zero vectors. Notice that the sums
,

d

,
g Yg(d) and

,
d Y•d will have the same

first q entries and the same last entry, but the second to last will be different between the

two sums. We define:

ΞG
n :=

1

n2

D!

d=1

Gd!

g=1

EYg(d)Y
′
g(d) (30)

ΞD
n :=

1

n2

D!

d=1

EY•dY
′
•d (31)

It turns out that all entries will be equal across these two matrices except for the second to

last diagonal entry, which corresponds to the variance estimation. We will require that ΞG
n

is well-behaved, and require nothing further since ΞD
n − ΞG

n is positive semi-definite.

Assumption 5.2.

1. λmin(Ωn) ≥ λ > 0 and Qn has rank p.

2. λmin(Ξ
G
n ) ≥ λ > 0.

3. Q−1
n ℓ ∕= 0

The first part of this assumption places some restrictions on the design, and these condi-

tions are sufficient for identification of θ, and non-degeneracy of the asymptotic distribution.

The second part is a non-degeneracy requirement for the components of the test statistic.

This non-degeneracy will be satisfied in almost all cases, and seems to be a mild assumption,

but it is stronger that what is required for validity of the test statistic. The last assumption

implies that the linear functional of interest is in fact estimable.
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Assumption 5.3. For rG, rD in Assumption 5.1, there exists max{rG, rD} < s/2 < ∞ such

that supi,g,dE |ydgi|2s < ∞, supi,g,d ‖xdgi‖2s < ∞, and supi,g,dE ‖zdgi‖2s < ∞.

This final assumption ensures the necessary uniform integrability condition is satisfied

to apply a Lindeberg central limit theorem. This assumption is quite strong; essentially,

8 moments are required to exist for the observed random variables. This is not surprising

when we consider that for validity of heteroskedastic-robust inference, we generally assume

fourth moments exist ydgi, xdgi, and zdgi. In our case, we also need the variances of the

squared terms to exist, which implies that we will double the number of required moments.

For estimating the variance, we define two different plug-in estimators:

Q̂n =
1

n

D!

d=1

Gd!

g=1

Z ′
g(d)Xg(d)

Ω̂G
n =

1

n

D!

d=1

Gd!

g=1

Z ′
g(d)ε̂g(d)ε̂

′
g(d)Zg(d)

Ω̂D
n =

1

n

D!

d=1

"
Gd!

g=1

Z ′
g(d)ε̂g(d)

#"
Gd!

g=1

ε̂′g(d)Zg(d)

#

V̂ G
n = Q̂−1

n Ω̂G
n (Q̂

′
n)

−1

V̂ D
n = Q̂−1

n Ω̂D
n (Q̂

′
n)

−1

We then construct the standard Wald test statistic for testing H0 : ℓ′β = θ0 against a

two-sided alternative:

nWG
n =

n(ℓ′β̂ − θ0)
2

ℓ′V̂ G
n ℓ

Before stating the theorem, we will also define:

cn :=
1

n

D!

d=1

G!

g=1

E[X ′
g(d)Zg(d)ana

′
nZ

′
g(d)εg(d)]

ξn := ∆/ℓ′Vnℓ

νn :=

2

34
2(ξnan − (Q′

n)
−1cn)

−ξ2n

2ξ2n

5

67

Our assumptions give us the following characterization of the two different test statistics

under a fixed alternative θ = θ0 +∆:
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Theorem 2. Under assumptions Assumptions 5.1-5.3, we have that there exist sequences

ΞA
n , νn, such that for A ∈ {G, D},

1(
ν ′
nΞ

A
nνn

$
WA

n − ξ2n
%
⇒ N (0, 1) (32)

Furthermore, for all n, ΞG
n ≤ ΞD

n , with equality only if the cluster levels are in fact equal.

Thus, asymptotically the Wald test using WG
n will be more powerful than the test using WD

n .

ν ′
nΞ

A
nνn involves both the convergence rate of each test statistic and the asymptotic variance

of each test statistic, and therefore we will provide part of the argument here as to why we

do not need to separate those two parts. Returning to the example of the sample mean,

we perform similar calculations to (10). Consider the sequence of critical values leading to

nondegenerate power for tests using WG
n :

CG
n = n

*
ξ2n − t

(
ν ′
nΞ

G
n νn

+

This sequence leads to asymptotic power Φ(t) for the test rejecting when nWG
n > CG

n . If

instead we use WD
n , we have:

P (nWD
n > CG

n ) = P

"
(ν ′

nΞ
D
n νn)

−1/2(WD
n − ξ2n) > −t

)
ν ′
nΞ

G
n νn

ν ′
nΞ

D
n νn

#

≤ P
$
(ν ′

nΞ
D
n νn)

−1/2(WD
n − ξ2n) > −t

%

→ Φ(t)

when t > 0, which we have argued is the relevant region for the relative efficiency com-

parisons. Thus, for asymptotic power in (1/2, 1), there is a cost from using WD
n instead of

WG
n .

It turns out that the difference ν ′
n(Ξ

G
n −ΞD

n )νn has a simple form, and this gives us some

insight into when we expect these differences to be particularly stark. We first define:

Πg(d) :=
ℓ′Q−1

n
1
n
E[Z ′

g(d)εg(d)ε
′
g(d)Zg(d)](Q

′
n)

−1ℓ

ℓ′Vnℓ

This is the proportion of total variation coming from cluster g. The difference of interest
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can be expressed as:

ν ′
n(Ξ

G
n − ΞD

n )νn = ξ4n

D!

d=1

Gd!

g=1

Πg(d)

"
!

h ∕=g

Πh(d)

#
(33)

Thus, the penalty for over-clustering is unambiguous: (ν ′
nΞ

D
n νn)/(ν

′
nΞ

G
n νn) > 1 for all n.

From (33), this difference is increasing in ξ2n, which suggests that the tests will behave

similarly when ξ2n is small. This is in agreement with a local-power analysis. One scenario

which leads to a larger penalty term stands out: when using the coarse clustering exacerbates

underlying heterogeneity. When a particularly large Πg is placed in a cluster with a large

number of independent clusters, the effect of that cluster on the variance estimator will be

inflated by a factor equal to
,

h ∕=g Πh(d).

It is also helpful to consider the case when the sampling scheme is i.i.d., but clusters

are imposed by the researcher when estimating the asymptotic variance. In that case, each

Πg(d) = 1/n, therefore we end up with:

ν ′
n(Ξ

G
n − ΞD

n )νn = ξ4n

8
1

n

D!

d=1

G2
d − 1

9

When the cluster sizes G2
d are all equal, this simplifies further to the Gd − 1 penalty term,

analogous to the case of the sample mean with homogenous cluster sizes in (6). When the

cluster sizes are heterogeneous, the penalty can be much larger.

This analysis has both theoretical and practical implications. We expand upon the finite

sample results in Abadie et al. (2017) by demonstrating an asymptotic penalty associated

with uneccessary clustering. Our results, being asymptotic in nature, also hold over a broad

class of data-generating processes. We also point out that our analysis answers a different

counterfactual than that posed by a hypothesis test of clustering level. The test proposed

in MacKinnon et al. (2020b) tests the null hypothesis that the fine clustering level is the

correct level. Our analysis suggests that when the fine clustering level is the correct level

we can quantify the penalty for using coarser clusters. Their procedure provides researchers

with information about when tests will have incorrect asymptotic size. We provide another

perspective, so that researchers can evaluate and weigh both their concern for having tests

with incorrect size and any loss in power from using a conservative clustering scheme.

We do not claim here that under-clustering is a good idea. Failing to cluster can lead to

invalid inference. Our goal here is to highlight the fact that there are tradeoffs. Depending

on the researcher’s information regarding the sampling scheme, it would be reasonable to

weigh the benefit of clustering at a coarser level (lower type-I errors) against the costs (higher
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type-II errors). These results formalize the costs associated with coarser “over-clustering”

in this trade-off.

5.2 Quantile regression

In this section we apply our procedure to variance estimation in the context of quantile

regression. One way to perform asymptotically valid inference in this setting involves using

a kernel density estimator to estimate the asymptotic variance. We use our tools previously

developed to provide insight into both the choice of a bandwidth and the choice of kernel.

We will provide only a partial decision in the context of choosing the bandwidth, however

we will still be able to provide researchers with some guidance. Note that quantile regression

corresponds to GMM with moment conditions:

g(yi, xi, βτ ) = xi

$
τ − 1[yi≤x′

iβτ ]

%

This function is not continuous, much less differentiable, therefore we need to extend our

results from Section 3.1. The smoothing procedure to obtain a replacement for the matrix of

partial derivatives Q introduces an infinite dimensional nuisance parameter which is present

during variance estimation, but does not play a role in estimating βτ . In this section, we

assume {(yi, x′
i)}ni=1 are i.i.d.. The model we work with is:

yi = x′
iβτ + εi, Qε(τ |xi) = 0 (34)

where Qε(·|xi) is the conditional quantile function of εi. Let f(·|xi) be the conditional density

of εi given xi. We define:

Ωτ := τ(1− τ)Exix
′
i

Qτ := E[f(0|xi)xix
′
i]

Assumption 5.4. Suppose that for an estimator β̂τ :

√
n(β̂τ − βτ ) ⇒ N

$
0, Q−1

τ ΩτQ
−1
τ

%

Estimating Ωτ is straightforward: under correct specification, we set:
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Ω̂τ =
1

n

n!

i=1

τ(1− τ)xix
′
i (35)

Assuming E ‖xi‖4 < ∞, for any constant matrix C,
√
n tr(C(Ω̂τ − Ωτ )) = OP (1) by

a standard central limit theorem. We will see that in our setting, the distribution of test

statistics will only depend on properties of Q̂τ , not Ω̂τ .
2 We will need to make several

assumptions on the kernel used, the conditional density of εi, and the bandwidth choice hn.

Assumption 5.5. The kernel function K is symmetric, of bounded variation, and normal-

ized such that:

:

R

uK(u)du = 0,

:

R

u2K(u)du = 1

This first assumption is satisfied by all kernel functions used in practice, such as the

Gaussian, Epanechnikov, Uniform, Biweight, and Triweight kernels. This assumption implies

that the function can only rise and fall finitely many times.

Assumption 5.6. There exist functions Gj(xi) such that for all xi, Gj(xi) ≥ |f (j)(u|xi)|,
uniformly in u, j ∈ {0, 1, 2}. Furthermore, Gj also satisfy, for some δj > 0, E(G0(xi)‖xi‖4+δ0) <

∞, E(G1(xi)‖xi‖2+δ1, and E(G2(xi)‖xi‖2) < ∞.

This assumption is quite similar to assumptions used in Kato (2012) in proving asymp-

totic normality of the variance estimator when using the uniform kernel. Bounding the den-

sity and the first two derivatives is standard in the literature on kernel density estimation,

and in the regression context due to the conditional nature of the density we must impose

additional restrictions on the regressors to ensure integrability of the envelope functions that

are used in the bounds.

Assumption 5.7. hn = o(log n/
√
n).

2We can actually relax the conditional-quantile assumption here, as Ω̂τ will still be
√
n-consistent for its

probability limit so the asymptotic distribution of the test statistic is unchanged.
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This bandwidth condition will allow the rate-optimal bandwidth, hn ∝ n−1/5. It is

slightly stronger than the bandwidth condition in Powell (1991), n2hn → ∞. Consider

testing a linear hypothesis of the form H0 : ℓ′βτ = θ0. Using a kernel estimator of Qτ , the

Wald statistic is nWn, where:

Wn =
(ℓ′β̂τ − θ0)

2

ℓ′Q̂−1
τ Ω̂τ Q̂−1

τ ℓ
, Q̂τ =

1

nhn

n!

i=1

xix
′
iK

&
ε̂i
hn

'

We also define the matrix A, and our non-centrality parameter ξ:

ξ :=
∆(

ℓ′Q−1
τ ΩτQ−1

τ ℓ
, A = 2ξ2Q−1

τ ℓℓ′Q−1
τ ΩτQ

−1
τ

Under these assumptions, we have the following result:

Theorem 3. Under Assumptions 5.5-5.7, we have that:

(
nhn

$
Wn − ξ2 − Bn

%
⇒ N

$
0, E[(x′

iAxi)
2f(0|xi)RK ]

%
(36)

where RK =
;
K(u)2du is the roughness, and the bias term is:

Bn =
1

2
E[x′

iAxif
′′(0|xi)h

2
n] (37)

The proof is distinct from that in Kato (2012), in that both proofs utilize empirical process

methods, but here we do not employ combinatorial arguments directly. Rather, we use kernel

properties from Giné and Nickl (2016) and a maximal inequality from Chernozhukov et al.

(2014). Note that for the asymptotic distribution, there is no contribution from estimating

βτ or Ωτ . Since both of these terms converge at the
√
n-rate, compared with Qτ they can

effectively be treated as known, using empirical process methods to bound those types of

errors.

Using (36), the first observation we make is that we do not want to undersmooth. If we

choose hn = o(n−1/5), then this leads to a slower rate of convergence; for our asymptotic

power comparisons, eliminating the bias is not worth the slower rate of convergence. Now,

for our discussion of kernel choice, we fix our bandwidth in that we assume it is of the form:

hn = cRγ1
Kn−γ2 (38)
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This includes the bandwidth proposed by Kato (2012), and standard asymptotic inte-

grated mean-squared error optimal bandwidths. We can use the asymptotic distribution of

the variance estimator to choose the bandwidth just as was done in Kato (2012), however

our result for choosing the kernel is valid under other choices of the bandwidth.

Proposition 1. Using the Epanechnikov kernel or Gaussian kernel leads to higher asymp-

totic power compared with using the uniform kernel, whenever the bandwidth used is of the

form in (38), for γ1 < 1

Generally, the bandwidth choice depends on RK so that γ1 ∕= 0, however γ1 < 1 in

all bandwidth selection rules known to us. Thus, to minimize the variance of the test

statistic, we want to minimize RK , leading to the recommendation to use the Gaussian

or Epanechnikov kernels in practice. In Powell (1991), consistency of the kernel variance

estimator was proved for the choice of the uniform kernel. In Stata, the default kernel when

using the qreg command is the Epanechnikov kernel, while in R, in the package quantreg,

the default when using rq is the Gaussian kernel. These choices were based on traditional

intuition from the general kernel density estimation problem, but there was no theoretical

reason to prefer these smooth kernels over the uniform kernel in the testing problem. We

provide such a justification here for using smooth kernels in the context of estimating the

asymptotic variance of the quantile regression parameter vector.

5.3 Wald and Anderson-Rubin Under Strong Identification

In this section we consider tests with different non-centrality parameters under a fixed al-

ternative. Up until this point, we have implicitly discussed consistent variance estimators in

the sense that consistency applies to all points in the parameter space. In general, asymptot-

ically valid tests can be developed by constructing variance estimators which are consistent

under the null hypothesis, but might not be consistent more generally.

We formalize this comparison in the context of a linear instrument variables model:

yi = xiθ + εi (39)

xi = ziπ + υi

We follow the exposition in Andrews et al. (2019), and presume that yi, xi, and zi have

already had the effects of any other control variables partialled-out. Our analysis focuses
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on the case that identification is strong: there exists C > 0 such that π2 ≥ C. We also

focus on the case xi, zi ∈ R, and our conclusions here readily generalize to the just-identified

case when xi, zi ∈ Rp. We do not discuss over-identified settings, as there it is well known

that Anderson-Rubin has some deficiencies with respect to asymptotic power under local

alternatives. We will also assume that the errors are homskedastic for expositional simplicity.

The two test statistics we consider for testing H0 : θ = θ0 under a two-sided alternative are:

Wn =
(θ̂ − θ0)

2Q̂2

1
n

,n
i=1 (yi − xiθ̂)2

Rn =
(θ̂ − θ0)

2Q̂2

1
n

,n
i=1 ((yi − ziπ̂θ̂)− (xi − ziπ̂)θ0)2

where θ̂ is the 2SLS estimator, π̂ and π̂θ̂ are the first-stage and reduced-form OLS estimators

respectively, and Q̂ = 1
n

,n
i=1 zixi. Note that if we replace θ0 with θ̂ in the denominator of

the definition of Rn, we have that Rn = Wn. Under the null hypothesis:

nWn ⇒ χ2
1

nRn ⇒ χ2
1

Let σ2 := E ε2i , σ
2
υ := E υ2

i , ρ := E εiυi, and E zixi = Q. Then, under a fixed-alternative

θ = θ0 +∆, we have the following probability limits of our test statistics:

Wn
P→ ∆2Q2

σ2
:= ξ2W

Rn
P→ ∆2Q2

σ2 + 2∆ρ+∆2σ2
υ

:= ξ2R

Our comparisons in Section 4 suggest that we should favor Wn when ξ2W > ξ2R, and favor

Rn when the reverse holds. By examination, we see that ξ2W > ξ2R exactly when:

2∆ρ+∆2σ2
υ > 0 (40)

Thus, when ∆ρ > 0, we prefer the Wald test, and when 1
2
|∆|σ2

υ > |ρ| in the case that ρ

and ∆ have opposite signs. Thus, in our relative efficiency comparison, we prefer Anderson-

Rubin to Wald, under strong identification, in the region {∆ : ∆ρ < 0, |∆| < 2|ρ|/σ2
υ}. In

the alternative-space, this region is a compact interval with 0 on one end and −2ρ/σ2
υ on the

other. In particular, if the first-stage is particularly noisy (large σ2
υ) or endogeneity is weak
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(|ρ| is small) then the region where we prefer Anderson-Rubin is small. This suggests that

the robustness gained from using Anderson-Rubin with respect to weak-instruments involves

a trade-off for power in part of the parameter space when identification is strong. Notice that

in this case, we did not compute the asymptotic distribution. In this case, our lexicographic

approach outlined in Section 4 implies that once we have different non-centrality parameters

for different test statistics, we have all we need to compare power under fixed alternatives.

This is a new way of comparing the test statistics, as previously it has been noted that

under local-power comparisons, in a just-identified setting Rn and Wn are asymptotically

equivalent. This case is nested in our approach, in the sense that ξ2R converges to ξ2W as

∆ → 0.

6 Simulation Evidence

In this section we evaluate the finite sample predictions made by the theory we have devel-

oped up to this point. We include simulations involving cluster-robust inference, quantile

regression, and IV. All computation was done in R (R Core Team (2021)). The quantreg

package (Koenker (2021)) was used for the simulations using quantile regression.

6.1 Cluster Robust Inference

Our first setup is very simple: 1440 i.i.d observations from a N (µ0+∆, 2) distribution, with

cluster sizes of 72, 144, 288, 480, 720.

Figure 2: Sample mean, i.i.d. observations

In Figure 2, we plot Monte-Carlo estimates of the power of a two-sided test against a null
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hypothesis that the mean is 0 using 10000 simulation draws. The solid lines are Monte-Carlo

power curves. We adjusted the critical values in these simulations so that the type-I error

rate is 0.01 for all tests; therefore, the tests conducted for the green solid line and the orange

solid line use different critical values. The dashed lines are computed using (24), with values

of Cα varying for the orange and green lines.

Unsurprisingly the power of the standard t-test dominates the clustered versions. The

t-test is the uniformly most powerful test, so this should be expected. Notice that the larger

the cluster size is relative to the total sample size, the more the behavior seems to reflect the

rate penalty for increasing cluster size rather than the fixed cost of over-clustering with a

fixed cluster size. Dividing the sample into 2 or 3 clusters seems extreme, but in our empirical

application, an option considered in practice is to divide a sample of size 1.5 million into 9

clusters.

Our theory predicts the ordering of the green and orange lines, however we do not have

a result for how well the approximation based on (24) will work in practice, and therefore

there is independent value in these simulations from a purely numerical perspective. We

observe that the approximation does particularly poorly when the alternative is small. We

would expect the local power approximation to do well in this region, and in fact it does:

when we included the local power approximations in this plot (one for each cluster level,

since we varied the critical values), they matched the solid curves quite well. This is due to

the fact that the local power approximation based on the non-central chi-square distribution

can be arrived at as an approximation to the non-central F distribution when the data are

normally distributed. Overall, our approximation based on (24) does get the ordering correct

throughout.

6.2 Quantile Regression

For out simulations with quantile regression, we simulated 250 i.i.d. observations based on:

yi = x′
iβ + εi, xi ∼ t3, εi|xi ∼ N (0, ‖xi‖2)

We chose a simple form of heteroskedasticity that leads to the error terms having heavy

tails, unconditionally. The dimension of xi is 5, βk = 0 for k ∕= 1. We test the two sided

hypothesis:

H0 : β1 = 0, H1 : β1 ∕= 0

We used the default settings in the quantreg package for computing the Bofinger (1975) and

Hall and Sheather (1988) bandwidth rules. The plot was generated using 50000 repetitions.

28



Figure 3: Quantile Regression

The solid lines are the Monte-Carlo power curves when the Bofinger (1975) bandwidth

is used. The green lines result from using a Gaussian kernel, the default in quantreg, and

the orange involve the use of the uniform kernel. Notice that our theory predicts that both

use of the Hall and Sheather (1988) bandwidth rule and uniform kernel leads to less efficient

inference, as seen in the plot. In finite samples, these simulations suggest that the choice

of kernel is more important than the bandwidth rule. This part does run counter to the

preference ordering we specified, as our theory says that if we had to choose between the

Gaussian kernel with a suboptimal bandwidth and the uniform kernel with a rate optimal

bandwidth, we would prefer the latter, which is clearly not reflected in Figure 3.

6.3 Anderson Rubin vs. Wald

In this final set of simulations, we consider the simplest IV model:

yi = xiβ + εi

xi = 0.2zi + υi

where xi, zi ∈ R and εi, υi are marginally standard normal, with correlation 0.3. We ran

50000 simulations using a sample size of 750.

In Figure 4, our theory matches quite well. The orange dashed line is the Monte-Carlo

power curve for the Wald test, and the solid green line is the corresponding power curve for

Anderson-Rubin. The tests use slightly different critical values so that size is controlled. On

the right side of zero, we notice that Wald dominates Anderson-Rubin, as predicted by our

theory, as (40) holds. To the left of zero, (40) does not hold from zero to the vertical dashes
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Figure 4: Anderson-Rubin vs. Wald

line, and in this region our theory states that Anderson-Rubin is preferred to Wald. To the

left of the vertical dashed line, Wald is preferred once again. We see this assertions matched

quite well by the simulated Monte-Carlo power curves.

7 Application: Clustering, County, State, Region

As an application, we use American Community Survey (ACS) data from 2005-2019 to

estimate the effect of minimum wage on employment. The ACS data have three natural

cluster levels: state-year, state, and region. We use the same data set used in MacKinnon

et al. (2020a) to demonstrate how to apply their sequential testing procedure when trying to

determine the appropriate clustering level.3 In this individual-level data set, natural clusters

include state-year, state, year, and U.S. Census Division, hence referred to as “region.” Our

specification of interest is:

yist = µ+ θmwst + z′istγ + δtyeart + δsstates + εist (41)

for individual i in state s in year t. Here, yist is a binary variable equal to 1 if an individual

is employed, 0 if unemployed. The parameter we will focus on is θ, the coefficient on the

minimum wage (mwst) in state s and year t. Other controls include individual level controls

zist, which includes race, gender, age, and education dummies. We also include state and

year fixed effects. The minimum wage data used comes from Neumark (2019). Details on

pre-processing of the data and combining the two data sets can be found in MacKinnon et al.

(2020a).

We now describe our approach to power analysis. We emphasize that our recommenda-

tions here do not replace a sequential testing procedure as proposed in MacKinnon et al.

3They follow several pre-processing steps that are outlined in their paper; their data can be found on the
authors’ websites.
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(2020b). Rather, we see our methods giving researchers a more complete information set

to make decisions about their testing problems. Tests determining the correct level of clus-

tering communicate the benefit, in terms of test accuracy, of clustering at a coarser level.

Our analysis communicates the cost of clustering at a coarser level when the fine level is

correct. Together, the procedures give a balance of costs and benefits for researchers to

make informed decisions.

Our approach is to take the approximation in (32) and use the approximating normal

distribution to obtain power curves, as a function of ∆. These approximations do not control

the relative error, but we argue they are still useful. To be precise, our estimated power curve

is:

Φ

" √
n∆2

(ℓ′V̂nℓ)(ν̂ ′
nΞ̂nν̂n)1/2

− Cα√
n(ν̂ ′

nΞ̂nν̂n)1/2

#
(42)

In cases of practical interest, these terms will not be large. To see why, observe that

n∆2/ℓ′Vnℓ is the population version of the Wald statistic. In cases of practical interest

for power comparisons, this term is smaller than 10. We need to also consider nν ′
nΞnνn.

ν ′
nΞnνn will be small for small ∆2, and when for sufficiently small ∆2, the negative term

will dominate, and the power will be close to 0. Thus, for ∆ values of practical interest, we

expect this approximation to provide good guidance.

We note that we must estimate β, V A
n , νn, and ΞA

n . β̂ is fixed across all test statistics.

Since we assume that the finer cluster level is the correct cluster in all cases, we use the

variance estimator at the finer level to estimate V A
n and νn. The challenge becomes estimating

ΞA
n . We must assume a certain kind of homogeneity across clusters. Let Xg(d), εg(d) be the

finest cluster-level design matrix and error vector. When we assume this is the correct

clustering level, we also assume that the cluster-sums
,

g X
′
g(d)εg(d),

,
g X

′
g(d)εg(d)ε

′
g(d)Xg(d),,

g X
′
g(d)Xg(d) are i.i.d. across clusters. This will lead to a conservative estimate of the

differences in power, as our asymptotic comparison implies that increased heterogeneity in

the sizes of the too-coarse clusters leads to a large penalty for too-coarse clustering.

The reason we need this homogeneity is that we end up needing to estimate a variance

of the variance estimator, of the form:

G!

g=1

E(X ′
gε)

4 −
$
E(X ′

gεg)
2
%2

(43)

Plugging in the residuals for εg here, without assuming any kinds of similarity across g leads

to this term being numerically 0.

We consider two base levels of correct clustering: state-year and state. The OLS estimate
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of θ is −0.00367, corresponding to the dashed blue line on each plot. We provide this as a

guideline for where the empirically relevant portion of the power curves are. In Figure 5, we

treat state-year as the true cluster level. In the left panel, we show the absolute power curves,

with state-year and state seeming very close together, with region a bit below. On the right,

we plot the difference between power curves, subtracting from the power of the test that uses

state-year as the cluster variable. We see that that the predicted power loss of clustering at

the region level is between 0.10 and 0.14 in the vicinity of the estimate of θ. Clustering at

the state level does not induce nearly so large a penalty, with more modest power losses of

0.02-0.03. In Figure 6, states are the true clusters, but observations are independent across

states within a region. We see a power loss of around 0.075 in the vicinity of θ̂.

These results and our methods complement those in MacKinnon et al. (2020a), where

they found that clustering in this example should most likely be done at the state level. Our

analysis focuses on the degree to which (block)-diagonal elements of the error-covariance

matrix are sufficiently large to make coarse clustering too conservative, while they look

to the off-(block) diagonal entries to ascertain validity. Together, the evidence points to

clustering at the state level. Their results suggest that clustering at the region level should

not improve size control relative to clustering at the state level, and our results imply there

is a meaningful power loss from doing so. Simultaneously, their results indicate that there is

a benefit to test accuracy from clustering at the state level rather than the state-year level,

and our analysis indicates any loss in power if this coarser clustering is incorrect should be

minimal.

Figure 5: True clustering: state-year
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Figure 6: True clustering: state

8 Conclusion

In this paper we develop a first-order asymptotic theory of Wald test statistics under fixed

alternatives. We motivate this discussion by mapping the asymptotic distribution to a

relative efficiency measure. Our main finding is that this alternative asymptotic framework

distinguishes between approaches to testing that more classical approaches cannot order.

This opens up the possibility of comparing different variance estimators that have previously

been chosen based on simulation evidence, higher-order comparisons, or finite-sample criteria.

Our approach applies to a broad class of models. One conclusion of particular interest for

applied researchers is that there is an asymptotic cost for clustering at too-coarse a level.

Our analysis also provides new insights into problems in econometric inference. Two notable

examples are the consequences for power of heavy-tailed regressors/instruments, and issues

arising from heavy-tailed errors in the first-stage regression in IV models.

There are also plenty of cases of interest not considered here. Our analysis could be

applied to comparing commonly used heteroskedastic-robust variance estimators. We also

did not pursue any high-dimensional or machine learning applications here, and it would

be interesting to consider how our efficiency analysis could provide guidance for tuning

parameter choices in that setting.
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A Proofs of Main Results

Throughout, C will denote an arbitrary constant satisfying an upper bound, and λ will denote

an arbitrary constant satisfying a lower bound; these will change based on the context.

A.1 Proof of Theorem 1

Under the assumptions of the theorem, for any matrix A ∈ Rq×q, we have that the estimator

β̂ is asymptotically linear:

√
n(β̂ − β) = V Q′ 1√

n

n!

i=1

g(Xi, β) + oP (1) (44)

We then obtain an asymptotically linear form for Ω̂:

√
n tr(A(Ω̂− Ω)) =

1√
n

!

i

g(Xi, β̂)
′Ag(Xi, β̂)−

√
nḡ(β̂)′Aḡ(β̂)−

√
n tr(AΩ) (45)

=
1√
n

!

i

g(Xi, β)
′Ag(Xi, β)−

√
nḡ(β)′Aḡ(β)−

√
n tr(AΩ) (46)

+ E[g(Xi, β)
′A

∂

∂β′ g(Xi, β)]
√
n(β̂ − β) + oP (1) (47)

=
1√
n

!

i

g(Xi, β)
′Ag(Xi, β)− E[g(Xi, β)

′Ag(Xi, β)] (48)

+ E[g(Xi, β)
′A

∂

∂β′ g(Xi, β)]V Q′Ω−1 1√
n

!

i

g(Xi, β) + oP (1) (49)

We also obtain an asymptotically linear form for Q̂:
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√
n tr(B(Q̂−Q)) =

1√
n

!

i

tr(B
∂

∂β′ g(Xi, β̂))−
√
n tr(B′Q) (50)

=
1√
n

!

i

q!

k=1

∂

∂β
gk(Xi, β̂)

′bk −
√
n tr(B′Q) (51)

=
1√
n

!

i

q!

k=1

∂

∂β
gk(Xi, β)

′bk (52)

+

"
q!

k=1

E

-
∂

∂β∂β′ gk(Xi, β)

/
bk

#′
√
n(β̂ − β) (53)

−
√
n tr(B′Q) (54)

=
1√
n

!

i

q!

k=1

∂

∂β
gk(Xi, β)

′bk − E
8

q!

k=1

∂

∂β
gk(Xi, β)

′bk

9
(55)

+

"
q!

k=1

E

-
∂

∂β∂β′ gk(Xi, β)

/
bk

#′
√
n(β̂ − β) + oP (1) (56)

The relevant constants A,B, and c for us are:

A = Ω−1QV ℓℓ′V Q′Ω−1 (57)

= aa′, a = Ω−1QV ℓ (58)

B = V ℓℓ′V Q′Ω−1 (59)

= ba′, b = V ℓ (60)

c =

2

334

Ω−1Q′V
*

−2∆
ℓ′V ℓ

ℓ− ∆2

(ℓ′V ℓ)2
E[ ∂

∂β′ g(Xi, β)Ag(Xi, β)] +
2∆2

(ℓ′V ℓ)2

,q
k=1E

0
∂

∂β∂β′ gk(Xi, β)
1
bk

+

−∆2

(ℓ′V ℓ)2

2∆2

(ℓ′V ℓ)2

5

667

(61)

and finally, Ξ is the asymptotic covariance matrix for:

1√
n

n!

i=1

2

34
g(Xi, β)

(a′g(Xi, β))
2 − a′Ωa

a′ ∂
∂β′ g(Xi, β)b− a′Qb

5

67 ⇒ N (0,Ξ) (62)

We now list each partition Ξij:
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Ξ11 = Ω

Ξ12 = Ξ′
21 = E[g(Xi, β)(a

′g(Xi, β))
2]

Ξ22 = E(a′g(Xi, β))
4 − (a′Ωa)2

Ξ23 = Ξ32 = E[(a′g(Xi, β))
2a′∂β′g(Xi, β)b]− a′Qbℓ′b

Ξ33 = E(a′∂β′g(Xi, β)b)
2 − (a′Qb)2

The result then follows from Assumptions 3.1-3.3 and (17)-(20), and applying the stan-

dard multivariate central limit theorem.

A.2 Proof of Theorem 2

The first goal will be to derive a central limit theorem for a particular linear functionals of:

Sn :=
1

n

G!

g=1

2

34
Z ′

gεg

ℓ′Q−1
n (Z ′

gεgε
′
gZg − E[Z ′

gεgε
′
gZg])(Q

′
n)

−1ℓ

ℓ′Q−1
n (Z ′

gXg − EZ ′
gXg)Q

−1
n Ωn(Q

′
n)

−1ℓ

5

67 (63)

Define:

cn :=
1

n

G!

g=1

E[X ′
gZgana

′
nZ

′
gεg] (64)

ξn := ∆/ℓ′Vnℓ (65)

Yg :=
1

n

2

34
Z ′

gεg

a′n(Z
′
gεgε

′
gZg − E[Z ′

gεgε
′
gZg])an

a′n(Z
′
gXg − EZ ′

gXg)bn

5

67 (66)

The linear combination we will be interested in is:

νn :=

2

34
2(ξnan − (Q′

n)
−1cn)

−ξ2n

2ξ2n

5

67 (67)

First, note that by Assumption 5.2, ΞG
n := ESnS

′
n exists and is well-behaved, and therefore

if we are going to find a limit distribution, we would expect it to be:

(ν ′
nΞ

G
n νn)

−1/2ν ′
nSn ⇒ N (0, 1) (68)
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By Assumption 5.3, the Yg are uniformly integrable, and thus Assumptions 5.1-5.2, the as-

sumptions of Corollary 1 in Hansen and Lee (2019) are satisfied and (68) holds. Furthermore,

since Sn
P→ 0, ΞG

n contains the information about the rate of convergence of the elements of

Sn. Next, note that:

WG
n − ∆2

ℓ′Vnℓ

P→ 0 (69)

To see why this is, examine the three components of the difference:

WG
n − ∆2

ℓ′Vnℓ
=

(ℓ′β̂ − θ0)
2

ℓ′V̂ G
n ℓ

− ∆2

ℓ′Vnℓ
(70)

=
(ℓ′β̂ − θ)2

ℓ′V̂ G
n ℓ

(71)

+
2∆(ℓ′β̂ − θ)

ℓ′V̂ G
n ℓ

(72)

+∆2

"
1

ℓ′V̂ G
n ℓ

− 1

ℓ′Vnℓ

#
(73)

The first term is OP (1/n), by Theorem 9 in Hansen and Lee (2019). The third term is oP (1)

by the continuous mapping theorem, the rank condition, and Theorem 9 in Hansen and Lee

(2019). Lastly, the middle term is equal to:

2∆
√
n
√
ℓ′Vnℓ

√
n(ℓ′β̂ − θ)√

ℓ′Vnℓ
+ oP (1) (74)

This term is OP (1):

√
n(ℓ′β̂ − θ)√

ℓ′Vnℓ
(75)

by Theorem 9 in Hansen and Lee (2019). Examining the other term, we have:

nℓ′Vnℓ = ℓ′Q−1
n

G!

g=1

EZ ′
gεgε

′
gZg(Q

′
n)

−1ℓ (76)

The rank condition on Qn implies that this term goes to ∞, therefore (74) converges to 0 in

probability, and therefore WG
n −∆2/ℓ′Vnℓ

P→ 0.
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There are three rates of convergence at play here:

ℓ′β̂ − θ
P→ 0 (77)

‖Q̂n −Qn‖
P→ 0 (78)

‖Ω̂n − Ωn‖
P→ 0 (79)

The rate of convergence of ℓ′β̂ − θ will be the fastest rate, at least weakly. To see why,

consider (74).

These terms play a role in how closely ν ′
nSn approximates the centered test statistic.

Rewriting:

WG
n − ∆2

ℓ′Vnℓ
=

(ℓ′β̂ − θ0)
2

ℓ′V̂ G
n ℓ

− ∆2

ℓ′Vnℓ
(80)

=
(ℓ′β̂ − θ)2

ℓ′V̂ G
n ℓ

(81)

+
2∆(ℓ′β̂ − θ)

ℓ′V̂ G
n ℓ

(82)

+∆2

"
1

ℓ′V̂ G
n ℓ

− 1

ℓ′Vnℓ

#
(83)

(82) can be properly normalized to be asymptotically normal, so the main component of

interest is (83). Using a Taylor expansion, we write:

∆2

"
1

ℓ′V̂ A
n ℓ

− 1

ℓ′V G
n ℓ

#
= − ∆2

(ℓ′Ṽ G
n ℓ)2

*
ℓ′V̂ G

n ℓ− ℓ′Vnℓ
+

(84)

where Ṽ G
n is a convex combination of V̂ G

n and Vn, since we are using the scalar version

of Taylor’s theorem. Now, we separate (84) into a component depending on Q̂n and a

component depending on Ω̂n:

ℓ′V̂ G
n ℓ− ℓ′Vnℓ = ℓ′Q̂−1

n Ω̂G
n (Q̂

′
n)

−1ℓ− ℓ′Q−1
n Ωn(Q

′
n)

−1ℓ (85)

= ℓ′Q̂−1
n Ω̂G

n (Q̂
′
n)

−1ℓ− ℓ′Q̂−1
n Ωn(Q̂

′
n)

−1ℓ (86)

+ ℓ′Q̂−1
n Ωn(Q̂

′
n)

−1ℓ− ℓ′Q−1
n Ωn(Q

′
n)

−1ℓ (87)

First, consider (86). This terms is almost ready to analyze, but we are using a feasible
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estimator of Ωn rather than the infeasible estimator with known εgi. Thus, we have:

Ω̌G
n :=

1

n

G!

g=1

Z ′
gεgε

′
gZg (88)

Ω̂G
n = Ω̌G

n − 1

n

G!

g=1

Z ′
gεg(β̂ − β)′X ′

gZg −
1

n

G!

g=1

Z ′
gXg(β̂ − β)ε′gZg (89)

+
1

n

G!

g=1

Z ′
gXg(β̂ − β)(β̂ − β)′X ′

gZg (90)

We will actually show that we only need to consider (89), and (90) will be negligible, since

it is of lower-order. With our moment conditions, we have that there exists C such that:

.....
1

n

G!

g=1

Z ′
gXg(β̂ − β)(β̂ − β)′X ′

gZg

..... ≤ C‖β̂ − β‖2 (91)

In fact, the slowest rate of convergence of this term is going to be Ω̌G
n , since

.....
1

n

G!

g=1

Z ′
gεg(β̂ − β)′X ′

gZg

..... ≤ C‖β̂ − β‖ (92)

We proceed by next carefully performing a Taylor expansion of (87).

ℓ′Q̂−1
n Ωn(Q̂

′
n)

−1ℓ− ℓ′Q−1
n Ωn(Q

′
n)

−1ℓ = tr(−2(Q̃n)
−1Ωn(Q̃

′
n)

−1ℓℓ′(Q̃n)
−1(Q̂n −Qn) (93)

where Q̃n is an element-wise convex combination of Qn and Q̂n, i.e. [Q̃n]ij = ωij[Qn]ij +

(1−ωij)[Q̂n]ij, for possibly different ωij. Gathering terms from (82), (86), and (93), and the

constants in (84), we have:

WG
n − ∆2

ℓ′V G
n ℓ

=
2∆(ℓ′β̂ − θ)

ℓ′V̂nℓ
(94)

− ∆2

(ℓ′Ṽ G
n ℓ)2

tr((Q̂′
n)

−1ℓℓ′Q̂−1
n (Ω̂G

n − Ωn)) (95)

+
2∆2

(ℓ′Ṽ G
n ℓ)2

tr((Q̃n)
−1Ωn(Q̃

′
n)

−1ℓℓ′(Q̃n)
−1(Q̂n −Qn) (96)

+OP (1/n) (97)
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This implies that the asymptotic distribution of WG
n − ∆2

ℓ′V G
n ℓ

should be the same as:

W̄G
n − ∆2

ℓ′Vnℓ
:=

2∆(ℓ′β̂ − θ)

ℓ′Vnℓ
− 2

1

n

G!

g=1

E[ε′gZg(Q
′
n)

−1ℓℓ′Q−1
n Z ′

gXg](β̂ − β) (98)

− ∆2

(ℓ′Vnℓ)2
tr((Q′

n)
−1ℓℓ′Q−1

n (Ω̌G
n − Ωn)) (99)

+
2∆2

(ℓ′Vnℓ)2
tr((Qn)

−1Ωn(Q
′
n)

−1ℓℓ′(Qn)
−1(Q̂n −Qn) (100)

since

‖WG
n − W̄G

n ‖ = oP

*
max

<
‖β̂ − β‖, ‖Q̂n −Qn‖, ‖Ω̌n − Ωn‖

=+
(101)

Furthermore, we also have that:

‖W̄G
n −∆2/ℓ′Vnℓ− ν ′

nSn‖ = oP

*
max

<
‖β̂ − β‖, ‖Q̂n −Qn‖, ‖Ω̌n − Ωn‖

=+
(102)

Note that (‖β̂ − β‖, ‖Q̂n −Qn‖, ‖Ω̌n − Ωn‖)′ = OP ((ν
′
nΞ

G
n νn)

1/2). Thus, we have that:

(ν ′
nΞ

G
n νn)

−1/2

&
WG

n − ∆2

ℓ′Vnℓ

'
= (ν ′

nΞ
G
n νn)

−1/2ν ′
nSn + oP (1) (103)

The proof when using V̂ D
n is similar. Now, when looking at ΞD

n −ΞG
n , we note that all terms

are zero, except for the second-to-last diagonal element. We need to compute [ΞD
n ]q+1,q+1 in

terms of the moments of (Yg)q+1,q+1

[ΞD
n ]q+1,q+1 − [ΞG

n ]q+1,q+1 =
1

n2

D!

d=1

!

g ∕=h

E(a′nZ
′
g(d)εg(d))

2E(a′nZ
′
h(d)εh(d))

2 ≥ 0 (104)

To see why this is, consider the cumulants; we drop the subscripts for the element in Yd and

40



Yg since it is clear what we mean here:

Yd :=

Gd!

g=1

a′nZ
′
gεg (105)

=

Gd!

g=1

Ydg (106)

EYd =

Gd!

g=1

EYg(d) (107)

= 0 (108)

Var(Yd) = EY 2
d =

Gd!

g=1

E(a′nZ
′
gε)

2 (109)

=

Gd!

g=1

Var(Ydg) (110)

Let k4(X) be the 4th cumulant of X. Then, we have that:

EY 4
d = k4(Yd) + 3(EY 2

d )
2 = k4(Yd) + 3

"
Gd!

g=1

Var(Yg(d))

#2

(111)

By the properties of cumulants, we have that, using properties of the cumulants again:

k4(Yd) =

Gd!

g=1

k4(Yg(d))

=

Gd!

g=1

EY 4
g(d) − 3(EY 2

g(d))
2

EY 4
d =

Gd!

g=1

EY 4
g(d) + 3

!

h ∕=g

Var(Yg(d)) Var(Yh(d))

Thus:
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[ΞD
n ]q+1,q+1 − [ΞG

n ]q+1,q+1 =
1

n2

D!

d=1

!

g ∕=h

E(Yg(d))
2E(Yh(d))

2 (112)

=
1

n2

D!

d=1

!

g ∕=h

E(a′nZ
′
g(d)εg(d))

2E(a′nZ
′
h(d)εh(d))

2 ≥ 0 (113)

(114)

Now, consider the critical values:

Cn = n

&
∆2

ℓ′V G
n ℓ

− t(ν ′
nΞ

G
n νn)

1/2

'
(115)

Under this sequence of critical values, our power approximation for using WG
n is:

P (nWG
n > Cn) = P

&
(ν ′

nΞ
G
n νn)

−1/2

&
WG

n − ∆2

ℓ′V G
n ℓ

'
> −t

'

→ Φ(t)

When using WD
n , we have:

P (nWD
n > CG

n ) = P

"
(ν ′

nΞ
D
n νn)

−1/2(WD
n − ξ2n) > −t

)
ν ′
nΞ

G
n νn

ν ′
nΞ

D
n νn

#

≤ P
$
(ν ′

nΞ
D
n νn)

−1/2(WD
n − ξ2n) > −t

%

→ Φ(t)

for t > 0.
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A.3 Proof of Theorem 3

We proceed in a similar fashion to Kato (2012). Expanding the test-statistic:

Wn −
∆2

ℓ′Q−1
τ ΩQ−1

τ ℓ
(116)

=
(ℓ′β̂(τ)− θ)2

ℓ′Q̂−1
τ Ω̂Q̂−1

τ ℓ
(117)

+
2∆(ℓ′β̂(τ)− θ)

ℓ′Q̂−1
τ Ω̂Q̂−1

τ ℓ
(118)

+
∆2

ℓ′Q̂−1
τ Ω̂Q̂−1

τ ℓ
− ∆2

ℓ′Q−1
τ ΩQ−1

τ ℓ
(119)

By Slutksy’s theorem, Assumption 5.4 and the bandwidth condition in Assumption 5.7,

(117) is OP (1/n) and (118) is OP (1/
√
n). Turning to (119), consider the expansion:

∆2

ℓ′Q̂−1
τ Ω̂τ Q̂−1

τ ℓ
− ∆2

ℓ′Q−1
τ ΩτQ−1

τ ℓ
(120)

=
∆2

ℓ′Q̂−1
τ Ω̂τ Q̂−1

τ ℓ
− ∆2

ℓ′Q̂−1
τ Ωτ Q̂−1

τ ℓ
+

∆2

ℓ′Q̂−1
τ Ω̂τ Q̂−1

τ ℓ
− ∆2

ℓ′Q−1
τ ΩτQ−1

τ ℓ
(121)

We note that the first difference is of the same order as ‖Ω̂τ −Ωτ‖, and therefore is of order

OP (1/
√
n). We turn to the second difference, and note by the mean value theorem:

∆2

ℓ′Q̂−1
τ Ω̂τ Q̂−1

τ ℓ
− ∆2

ℓ′Q−1
τ ΩτQ−1

τ ℓ
= tr(A(Q̂τ −Qτ )) + oP (1/

(
nhn) (122)

A :=
2Q−1∆2ℓℓ′Q−1ΩQ−1

(ℓ′Q−1ΩQ−1ℓ)2
(123)

We will supply an argument for the rate assertion later. Let ψβ(zi) := tr(Axix
′
i)K((y −

x′
iβ)/hn). Thus, we start by considering that:

h−1
n Pn ψβ̂(zi)

P→ tr(AE[xix
′
if(0|xi)])

but that since h−1
n Eψβ(zi) ∕= tr(AE[xix

′
if(0|xi)]), and generally the difference is asymptot-

ically non-negligible, we start by looking at the simple decomposition:
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>
n

hn

*
Pn ψβ̂ − Eψβ

+
= h−1/2

n

*
Gn ψb|b=β̂ −Gn ψβ

+
(124)

+ h−1/2
n Gn ψβ (125)

+
(

nhn

*
h−1
n Eψb(zi)|b=β̂ − h−1

n Eψβ(zi)
+

(126)

(126) can be bounded since:

Eh−1
n ψb(zi) = E

-
x′
iAxi(f(x

′
i(βτ − b)|xi) +

1

2
f ′′(x′

i(βτ − b)|xi)h
2
n + o(h2

n))

/
(127)

Thus, by Assumption 5.4 and 5.6, (126) is oP (1). Thus, we can turn our attention to

(124), since (125) will satisfy a standard Lindeberg CLT for kernel density estimators. An

implication of Assumption 5.5 is that there exist functions K1, K2 such that Ki is non-

negative, non-decreasing, and K = K1 − K2. Furthermore, |K|v = |K1|v + |K2|v, so we

have a simple form of the total-variation norm. Using arguments similar to those found in

Einmahl and Mason (2000), we have that, for t, s ∈ Rp, letting δt = t− β, δs = s− β,

K

&
εi − x′

iδt
hn

'
−K

&
εi − x′

iδs
hn

'
= K1

&
εi − x′

iδt
hn

'
−K1

&
εi − x′

iδs
hn

'

−
&
K2

&
εi − x′

iδt
hn

'
−K2

&
εi − x′

iδs
hn

''

=

: εi−x′iδt
hn

εi−x′
i
δs

hn

dK1(x)−
: εi−x′iδt

hn

εi−x′
i
δs

hn

dK2(x)

This implies, via the triangle inequality,

????K
&
εi − x′

iδt
hn

'
−K

&
εi − x′

iδs
hn

'???? ≤
: ????1[

εi−x′
i
δs

hn
,
εi−x′

i
δt

hn
]
(x)

???? d(K1(x) +K2(x)) (128)

Thus, using (128), we can use Hölder’s inequality to bound the mean-squared difference:
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E

8&
K

&
εi − x′

iδt
hn

'
−K

&
εi − x′

iδs
hn

''2
????? xi

9
≤

:
E

????1[
εi−x′

i
δs

hn
,
εi−x′

i
δt

hn
]
(x)

???? d(K1(x) +K2(x))|K|v

(129)

=

: ?????

: x′
iδt+hnx

x′
iδs+hnx

f(ε|xi)dε

????? d(K1(x) +K2(x))|K|v

(130)

≤ ‖f(·|xi)‖∞|K|2v‖xi‖2‖t− s‖2 (131)

Now, by Assumption 5.6:

E

8&
K

&
εi − x′

iδt
hn

'
−K

&
εi − x′

iδs
hn

''2
9
= O(‖t− s‖2) (132)

Now, we return to (124). For any δ > 0, let Nδ/
√
n(β)} be a δ/

√
n neighborhood of β. Then,

we have that for any ε > 0,

P

"
sup

b∈Nδ/
√
n(β)

|Gn(ψb − ψβ)| > h1/2
n ε

#
≤ 1

εh
1/2
n

E

"
sup

b∈Nδ/
√
n(β)

|Gn(ψb − ψβ)|
#

We now need a slight extension of a VC-class result from Giné and Nickl (2016):

Proposition 2. Let K = {(ε, x) /→ K
$
ε−x′t

h

%
: t ∈ Rp, h > 0}. Then K is of VC-type.

The arguments are the same as in Giné and Nickl (2016), with the finite-dimensional

vector space having dimension p+ 2, so we omit the proof.

We are now ready to use the maximal inequality of Chernozhukov et al. (2014):

h−1/2
n E

"
sup

b∈Nδ/
√
n(β)

|Gn(ψb − ψβ)|
#

= O

">
log n

hnn1/2

#

where in the notation of Corollary 5.1 of Chernozhukov et al. (2014), we can choose σ2 =

O(1/
√
n) by (132). This means that when hn = o(log n/

√
n), (124) converges to zero in

probability.

Thus, we have that, by standard results on kernel density estimation,
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(
nhn

&
Wn −

∆2

ℓ′Q−1
τ ΩτQ−1

τ ℓ
− 1

2
E[x′

iAxif
′′(0|xi)h

2
n]

'
⇒ N

$
0, E[(x′

iAxi)
2f(0|xi)RK ]

%

(133)
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